期刊文献+

a尺度紧支撑Riesz小波的构造

Construction of Riesz Wavelets of Dilation Factor a with Short Support
原文传递
导出
摘要 从由m阶B样条函数Bm(m∈N)生成的多分辨分析出发,给出一种构造具有a尺度、最短支撑、m阶消失矩、m-12阶正则性的Riesz小波的过程,并且系统X(ψ)构成L2(R)的Riesz基,数值算例支持了本文提出的小波构造方法. From the muhiresolution analysis generated by the B-spline of order m,this paper is to construct the shortest supported Riesz wavelet of dilation factor a with m vanishing momenls and m-1/2regularity. Further,the system X(Ф) forms a Riesz basis for L2(R).Finally, a numerical example is given.
作者 戴宏亮
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期145-149,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(60575004 10771220) 教育部高等学校博士点科研基金(SRFDP-20070558043)资助项目
关键词 a尺度 Riesz小波 B-样条函数 dilation factor a Riesz wavelets B-spline function
  • 相关文献

参考文献10

  • 1Daubechies I.Ten lectures on Wavelet.,[M]. Philadel phia:SIAM, 1992:61.
  • 2Bi N,Dai X,Sun Q. Construction of Compactly Sup ported M-Band Wavelet[J]. Applied and Computational Harmonic Analysis, 1999,6:113-131.
  • 3Heller P N. Rank M Wavelets with N Vanishing Moments[J]. SIAM Journal Matrix Analysis and Applications. 1995,16 : 502-518.
  • 4Chui C K,Lian J. Construction of Compactly Supported Symmetric and Antisymmetric Orthonormal Wavelets with Scale=3[J]. Applied and Computational Ha rmonic Analysis, 1995,2 : 21-51.
  • 5戴宏亮,羿旭明.a尺度紧支撑双正交多小波的提升格式的构造[J].武汉大学学报(理学版),2003,49(1):17-20. 被引量:1
  • 6Han Bin, Shen Zuowei. Wavelets with Short Support [J]. SIAM Journal on Mathematical Analysis, 2006, 38(2) : 530-556.
  • 7Maggioni M. M-Band Burt-Adelson Biorthogonal Wavelets[J]. Applied and Computational Harmonic Analysis, 2000,9 : 286-311.
  • 8Han B. Vector Cascade Algorithms and Refinable Function Vectors in Sobolev Spaces [J]. J Approx Theory, 2003,124 : 44-88.
  • 9Cohen A, Daubechies I. A New Technique to Eslimate lhe Regularity of Refinable Function[J]. Rev Mal Iberoamericana , 1996,12 : 527-591.
  • 10Ron A,Shen Z. Affine Systems in LⅡ:Dual Systems [J]. J Fourier Anal Appl, 1997,3:617-637.

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部