期刊文献+

基于堆叠集成的数据流分类 被引量:1

Classifying data streams by stacking ensemble
下载PDF
导出
摘要 对数据流分类分析的常用方法是集成学习。为了得到更好的分类效果,给出一种基于堆叠集成的数据流分类分析方法。该方法通过构造一个分类器对基分类器进行集成。实验结果表明,与基于投票或加权投票的集成方法相比,基于堆叠集成方法对概念漂移的快速适应能力以及预测准确率得到了提高。 Ensemble learning is a general method for classifying data streams. In order to get a better classification, this paper proposed a general framework for classifying data streams by stacking ensemble. Built another classifier to combine base classifiers. Experiments show that comparing majority vote or weight vote ensemble classifiers, stacking ensemble classifiers has stronger ability in adapting to concept drifting and higher accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2009年第5期1716-1718,共3页 Application Research of Computers
基金 西北农林科技大学青年骨干教师支持集合基金资助项目(01140301)
关键词 堆叠集成 数据流分类 概念漂移 stacking ensemble classifying data streams concept drifting
  • 相关文献

参考文献11

  • 1TSYMBAL A. The problem of concept drift: definitions and related work, TCD-CS-200-4-15 [ R ]. Dublin, Ireland : Department of Computer Science, Trinity College Dublin, 2004.
  • 2BABCOCK B, BABU S, DATAR M, et al. Models and issues in data stream systems[ C]//Proc of the 21st ACM SIGMOD SIGACT-SIGART Symposium on Principles of Database Systems. New York:ACM Press, 2002 : 1 - 16.
  • 3STREET W N, KIM Y. A streaming ensemble algorithm (SEA) for largescale classification[ C ]//Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2001:377-382.
  • 4WANG Hai-xun, FAN Wei, YU P S,et al. Mining concept drifting data streams using ensemble classifiers [ C ]//Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2004:226- 235.
  • 5UTGOFF P E. Incremental induction of decision trees[ J]. Machine Learning, 1989,4 (2) : 161 - 186.
  • 6GEHRKE J, GANTI V, RAMAKRISHNAN R,et al. BOAT:optimistic decision tree construction [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1999 : 169-180.
  • 7DASARATHY B V, SHEELA B V. Composite classifier system design: concepts and methodology [ J ]. Proceedings of the IEEE, 1979,67(9) :708-713.
  • 8POLIKAR R. Ensemble based systems in decition making[ J]. IEEE Circuits and Systems Magazine, 2006,6(3) :21-45.
  • 9TING Kai-min. Issues in stacked genralization[ J]. Journal of Artificial Intelligence Research, 1999,10:271 - 289.
  • 10GAMA J. Combining classification algorithms[ J]. AI Communications,2001,13(2) :135-136.

同被引文献25

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 2富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86-91. 被引量:5
  • 3TSYMBAL A. The problem of concept drift: definitions and related work [ R ]. Ireland: Computer Science Depart- ment, Trinity College :2004.
  • 4WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[ J ]. Machine Learning, 1996, 23( 1 ) :69-101.
  • 5GUO G, LI N, CHEN L F. Classification for concept - drifting data streams with limited amount of labeled data [CJ// Processings of 12th International Conference on Automatic Control and Artificial Intelligence, New Jersey: IET Press, 2012:4259-4265.
  • 6TSYMBAL A, PECHENIZKIY M, CUNNINGHAM P, et al. Dynamic integration of classifiers for handling con- cept drift [J]. Information Fusion, 2008, 9:56-68.
  • 7WANG H, FAN W, YU P, et al. Mining concept drifting data streams using ensemble classifiers[C]//Processings of 9th International Conference on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003:226-235.
  • 8KOLTER J, MALOOF M A. Dynamic weighted majority: a new ensemble method for tracking drifting concepts [C]// Processings of 3rd International 1EEE Conference on Data Mining. Los Alamitos: ACM Press, 2003:123-130.
  • 9KLINKERBERG R. Learning drifting concepts: exam- pies selection vs. example weighing [ J]. Intelligent Da- ta Analysis, 2004, 8 (3) :281-300.
  • 10VOLKAN V, JENNIFER G D. A hierarchical method for multi-class support machines [ C ] // Processings of the 21st International Machine Learning Conference. Banff:ACM Press, 2004 : 105-113.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部