期刊文献+

基于核自调整进行半监督聚类 被引量:2

Kernel-based adaptation for semi-supervised clustering
下载PDF
导出
摘要 半监督聚类是通过在无监督算法的基础上加入有限的背景知识来实现的。现有的基于核的半监督聚类算法对于核参数的设定仍需人工进行调节,其选择值会极大地影响最终的结果。通过将关联加入到聚类目标函数中,在聚类过程反复地优化高斯核参数,自动确定最佳RBF核,并将最佳核计算与SSKK算法结合起来得到SSKKOK算法。实验结果表明,该算法能在利用基于核半监督聚类算法功能的基础上自动设置有关的参数。 Semi-supervised clustering combines unsupervised clustering algorithms with limited background knowledge. However, setting of kernel parameters involved in SSKK( semi-supervised kernel-based kmeans) is still needed to manually regularize. The chosen value of critical parameters will largely effect on the result. The pair constraints were incorporated into clustering object function, and kernel parameters were optimized iteratively during clustering process till to determine optimal RBF kernel. Furthermore, SSKKOK algorithm was proposed, which was based on optimal kernel computation and SSKK algorithm. The experiment demonstrates the algorithm can not only utilize the effect of SSKK , but also automatically set involved parameters.
作者 崔鹏 张汝波
出处 《计算机应用研究》 CSCD 北大核心 2009年第5期1719-1722,共4页 Application Research of Computers
关键词 半监督聚类 关联 马尔可夫随机域 K均值 高斯核 semi-supervised clustering constraint HMRF K-means Gassian kernel
  • 相关文献

参考文献13

  • 1DHILLON I, GUAN Yu-qiang, KULIS B, et al, Kernel K-means: spectral clustering and normalized cuts[ C]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2004:345- 347.
  • 2BASU S, BILENKO M, MOONEY R, et al. A probabilisfic framework for semi-supervised clustering [ C ]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press. 2004 : 1248-1252.
  • 3CRISTIANINI N, SHAWE-TAYLOR J, ELISSEEFF A, et al. On kernel-target alignment[ J ]. Neural Information Processing Systems ,2001,36 (9) : 103-110.
  • 4CHAPELLE O, VAPNIK V. Choosing mutiple parameters for support vector machines [ J ]. Machine Learning, 2002,46 ( 1- 3 ) : 131- 159.
  • 5WANG Wen-jian, XU Z, LU W, et al.Determination of the spread parameter in the gaussian kernel for classification and regression [ J ]. Neuro Computing, 2002, 55 (3) : 645-650.
  • 6HUANG Jian, YUEN P C, CHEN Wen-sheng, et al. kernel subspace LDA with optimized Kernel parameters on face recognition [ C]//Proc of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. 2004 : 2115- 2118.
  • 7NATESH S, WU Qiang, LIANG Feng. Characterizing the function space for Bayesian kernel models [ J ]. Machine Learning Research, 2007,46 ( 8 ) : 1770-1778.
  • 8LOWED G. Similarity metric learning for a variable-kernel classifier [ J]. Neural Computation, 1995,7( 1 ) :72-85.
  • 9BASU S, BANERJEE A, MOONEY R. Semi-supervised clustering by seeding[ C]//Proc of the 19th International Conference on Machine Learning. San Francisco:Morgan Kanfmann Publishers, 2002:19-26.
  • 10KIRI W, CLAIRE C. Constrained K-means clustering with background knowledge[ C]//Proc of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2001: 577- 584.

同被引文献15

  • 1钱夕元,邵志清.模糊ISODATA聚类分析算法的实现及其应用研究[J].计算机工程与应用,2004,40(15):70-71. 被引量:17
  • 2Tianlong Gu, Parisa A.Bahri. A survey of Petri net application in batch processes[J]. Computer in Industry,2002,47:99-111.
  • 3GELBARD R,GOLDMAN O,SPIEGLER I.Investigating diversity of clustering methods:an empirical comparison[J].Data&Knowledge Engineering,2007,63(1):155-166.
  • 4FREY B J,DUECK D.Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.
  • 5KANG J H,LERMAN K,PLANGPRASOPCHOK A.Analyzing mi-croblogs with affinity propagation[C]//Proc of the1st Workshop on Social Media Analytics.New York:ACM Press,2010:67-70.
  • 6CHEN Yang,LORENZO B,SUN Feng-yue,et al.A fuzzy statistics based affinity propagation technique for clustering in multispectral im-ages[J].IEEE Trans on Geosciences and Remote Sensing,2010,48(6):2647-2659.
  • 7GIVONI E,FREY B J.A binary variable model for affinity propaga-tion[J].Neural Computation,2009,21(6):1589-1600.
  • 8BRRAND M.Charting a manifold[M]//Advances in Neural Informa-tion Processing Systems.Cambridge,MA:MIT Press,2003.
  • 9NG A Y,JORDAN M I,WEISS Y.On spectral clustering:analysis and an algorithm[M]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:856-864.
  • 10孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部