期刊文献+

视觉跟踪中模板匹配相似度指标研究 被引量:1

Research on template matching similarity criterion in visual tracking
下载PDF
导出
摘要 由于模板匹配中像素点r、g、b颜色值计算存在多对一缺陷,加之背景特征的影响,视觉跟踪中模板匹配往往得不到全局最优解。为此提出模糊隶属度概念和新的相似度指标公式,修正颜色值计算缺陷,相近似颜色值聚类,从而提高视觉跟踪中目标识别能力。这种新指标有效抑制背景成分的影响,同时突出目标特征的权重,改善匹配函数峰值特性,使得搜索目标得到全局最优解,最终实现鲁棒跟踪。实验结果表明,模板匹配具有良好的峰值特性,算法在跟踪目标存在变形、噪声、遮挡时也可以达到比较理想的跟踪效果。 Template matching in visual tracking often can' t obtain the global optimal solution because of the defect of pixels r,g,b color' s many to one in computation and the influence of background feature. This paper presented a concept of fuzzy membership and a novel similarity measure formula. The proposed method could overcome the defect of color computation and make similar color pixels clustered, consequently it could improve the ability of target recognition. The new criterion could effectively reduce the influence of background feature, and emphasized the importance of target feature. It could improve the peak modality of matching fimction, so the global optimal solution and robust tracking could be easily obtained. Experimental results show that template matching has an excellent peak-like distribution, and tracking algorithm has precision and robustness in the presence of noise, deformation and occlude.
出处 《计算机应用研究》 CSCD 北大核心 2009年第5期1941-1943,共3页 Application Research of Computers
基金 2006年教育部新世纪优秀人才计划资助项目(NCET-06-0487) 国家自然科学基金资助项目(60472060,60572034) 江苏省自然科学基金资助项目(BK2006081) 江南大学创新团队研究计划资助项目(JNIRT0702)
关键词 模板匹配 模糊隶属度 相似度度量 视觉跟踪 BHATTACHARYYA系数 template matching fuzzy membership similarity measure visual tracking Bhattacharyya coefficient
  • 相关文献

参考文献7

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2CHANG Cheng, ANSARI R. Kernel particle filter for visual tracking [J]. IEEE Signal Processing Letters,2005,12(3) :242-245.
  • 3KWOK C, FOX D, MEILA M. Adaptive real-time particle filter for robot localization[J]. Proceedings of Robotics and Automation, 2003, 9(2): 2836-2841.
  • 4CHEUNG K M G, BAKER S, KANADE T. Shape-from-silhouette of arti-culated objects and its use for human body kinematics estimation and motion capture[ C ]//Proc of IEEE Conference on Computer Vision Pattern Recognition. 2003:77-84.
  • 5NGUYEN H T, SMEULDERS A W M. Robust tracking using foreground-background texture discrimination [ J ]. Int d Comput Vision, 2006, 69(3) :277-293.
  • 6COMANICIUK D, MEER P. Mean shift: a robust approach toward feature space analysis[ J ]. IEEE Trans on Pattem Anal Math Intell,2002, 24(5 ) :603-619.
  • 7FENG Zu-ren, LU Na, JIANG Ping. Posterior probability measure for image matching[J]. Pattern Recognition ,2008, 41 (7) :2422-2433.

二级参考文献105

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献275

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部