期刊文献+

基于样条金字塔和互信息的快速图像配准 被引量:6

Fast image registration based on spline pyramid and mutual information
下载PDF
导出
摘要 采用高精度B样条生成金字塔,大幅降低了计算复杂度,通过Parzen窗计算联合直方图并在此基础上导出目标函数的Hessian矩阵表达式,将具备二次收敛性的Newton方法引入到优化过程从而大大提高了配准速度。对普通光学和多谱图像的配准实验表明,该算法大幅提高了互信息模型下的配准速度,且精度较高。 This paper introduced B-Spline pyramid into mutual information based registration procedure to improve the precision and efficiency. The proposed algorithm based on B-Spline pyramid adopted Newton instead of Powell optimizer while estimated the joint probability density function by Parzen window to improve the registration accuracy and efficiency, and experimental results show that the registration speed is substantially improved by the proposed algorithm with high accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2009年第5期1949-1950,1960,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60672060)
关键词 互信息 图像配准 Powell方法 NEWTON方法 PARZEN窗 mutual information (MI) image registration Powell algorithm Newton algorithm Parzen window
  • 相关文献

参考文献8

  • 1ZITOVT B, FLUSSER J. Image registration methods: a survey [ J ]. Image and Vision Computing, 2003, 21 ( 11 ) : 977-1000.
  • 2VIOLA P, WELLS W. Alignment by maximization of mutual information[ C ]// Proc of the 5th International Conference on Computer Vision. Boston : [ s. n. ] , 1995 : 16-23.
  • 3MAES F, COLLIGNON A. Multimodality image registration by maximization of mutual information [ J ], IEEE Trans on Med Imag, 1997, 16(2): 187-198.
  • 4INGLADA J. Analysis of artifacts in subpixel remote sensing image registration [ J ]. IEEE Trans on Geoscience and Remote te Sensing, 2007, 45( 1 ) : 254-265.
  • 5SHU Li-xia,TAN Tie-niu. SAR and SPOT image registration based on mutual information with contrast me, asure[C]//Proc of IEEE International Conference on Image Processing. 2007:429-432.
  • 6SHAMS R, SADEGHI P, KENNEDY R A. Gradient intensity: a new mutual information-based registration method [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2007:1-8.
  • 7COLLIGNON A, MAES F, VANDERMEULEN D,et al. Automated muhimadality image registration using information theory [ C ]// Proc of Information Processing in Medical Imaging Conference. Dordreeht: Kluwer Academic Publishers, 1995:263-274.
  • 8PHILIPPE T. Optimization of mutual information for muhiresolution image registration[J]. IEEE Trans on Image Processing, 2000, 9(12) : 2083-2090.

同被引文献49

  • 1杨帆,张汗灵.遗传算法和Poweli法结合的多分辨率三维图像配准[J].光电子.激光,2006,17(6):755-758. 被引量:19
  • 2李博,杨丹,张小洪.基于Harris多尺度角点检测的图像配准新算法[J].计算机工程与应用,2006,42(35):37-40. 被引量:32
  • 3李开宇.基于B样条插值的图像边缘检测的硬件实现[J].光电工程,2007,34(2):93-99. 被引量:1
  • 4陈锦,曾东.基于Spline金字塔的图像融合方法[J].实验科学与技术,2007,5(1):129-131. 被引量:3
  • 5INGLADA J,MURON V,PICHARD D,et al.Analysis of artifacts in subpixel remote sensing image registration[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45 (1):254-264.
  • 6SHU Lixia,TAN Tieniu.SAR and SPOT image registration based on mutual information with contrast measure[C] // Proceedings of the IEEE International Conference on Image Processing.Piscataway,NJ,USA:IEEE,2007:429-432.
  • 7PENG H,LONG F,DING C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and rain redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27:1226-1238.
  • 8PLUIM J P W,MAINTZ J B A,VIERGEVER M A.Mutual information based registration of medical images:a survey[J].IEEE Transactions on Medical Imaging,2003,22 (8):986-1004.
  • 9JOSIEN P W,PLUIM J B,ANTOINE M,et al.Interpolation artifacts in mutual information-based image registration[J].Computer Vision and Image Understanding,2000,77:211-232.
  • 10KENNEDY J,MENDES t.Neighborhood topologies in fully-in-formed and best-of-neighborhood particle swarms[J].IEEE Transactions on Systems,Man and Cybernetics:Part C Applications and Reviews,2006,36(4):515-519.

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部