期刊文献+

资源灰预测的反馈任务调度算法

Task scheduling algorithm based on resources grey prediction feedback
下载PDF
导出
摘要 为了达到网格环境下任务调度时的负载平衡,针对此环境下的资源的自治性、异构性和分布性等特性,利用改进的灰预测模型GM(1,1)预测方法,设计了资源实时预测模型,可在较小的开销下取得满意的负载平衡。基于该模型的资源灰预测反馈任务调度算法RGP-FB是把资源预测融入到网格环境下的任务调度策略中,从而使系统调度的综合效率提高。仿真实验证明了该算法的合理性和有效性。 In order to achieve load balance in task scheduling under the grid environment, in view of the resources' autonomy, isomerism and distribution under this circumstance, a model of resources real-time prediction was designed based on improved GM (1, 1 ) prediction method, which could get satisfied load balance with smaller expenditure. The task scheduling algorithm named RGP-FB based on resources prediction model integrated the dynamic forecast into the grid environment under the task scheduling strategy, then it could enhance the comprehensive efficiency of the scheduling system. Simulation results show that the algorithm is valid and effective.
出处 《计算机应用》 CSCD 北大核心 2009年第5期1276-1278,1304,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60863003) 教育部春晖计划资助项目(Z2005-1-65009) 新疆工业高等专科学校科研基金资助项目(WGZ2008K05)
关键词 任务调度 GM(1 1) 资源预测 task scheduling GM( 1, 1) resources prediction
  • 相关文献

参考文献7

  • 1KIRAN M, ABDALLA A H, JIUN Y Y, et al. A prediction module to optimize scheduling in a grid computing environment [ C]/// Proceedings of the International Conference on Computer and Communication Engineering. Washington, DC: IEEE Press, 2008: 888- 893.
  • 2李静,陈蜀宇,田东.一种网格环境下的动态负载均衡机制[J].计算机工程,2008,34(4):19-21. 被引量:3
  • 3CHAPMAN C, MUSOLESI M, EMMERICH W, et al. Predictive resource scheduling in computational grids [ C]// Parallel and Distributed Procession Symposium. Washington, DC: IEEE Press, 2007:1 - 10.
  • 4HU ZHOU-JUN, HU ZHI-GANG, LIU ZHEN-HUA. Resource availability evaluation in service grid environment [ C]// Proceedings of the 2nd IEEE Asia-Pacific Service Computing Conference: APSCC. Washington, DC: IEEE Computer Society, 2007: 232-238.
  • 5VENUGOPAL S, BUYYA R. A set coverage-based mapping heuristic for scheduling distributed data-intensive applications on global grids [ C]//7th IEEE/ACM International Conference on Grid Computing. Washington, DC: IEEE Press, 2006:238-245.
  • 6CHE XI-LONG, HU LIANG. Grid resource prediction approach based on NU-support vector regression [ C]// Proceedings of the Seventh International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press. 2008:778-783.
  • 7ALI S, SIEGEL H J, MAHESWARANETAL M. Task execution time modeling for heterogeneous computing [ C]/]/ Proceedings of the 9th Heterogeneous Computing Workshop. Washington, DC: IEEE Computer Society, 2000:185 - 199.

二级参考文献5

  • 1Lin F C, Keller P M. The Gradient Model Load Balancing Method[J]. IEEE Transactions on Software Engineering, 1991, 13(1): 32-38.
  • 2Willebeek M H, Reeves A P. Strategies for Dynamic Load Balancing on Highly Parallel Computers[J]. IEEE Transactions on Parallel Distributed Systems, 1993, 4(9): 979-993.
  • 3Loh P K K, Hsu W J, Cai Wentong. How Network Topology Affects Dynamic Load Balancing[J]. IEEE Parallel and Distributed Technology, 1996, 4(3): 25-35.
  • 4Liu Sifeng, Dang Yaoguo, Fang Zhigeng. Grey System: Theory and Application[M]. 3 ed. Beijing: Science Press, 2004.
  • 5Palmer C, Steffan J. Generating Network Topologies That Obey Power Law[C]//Proceedings of GLOBECOM. San Francisco, CA: IEEE Press. 2000: 434-438.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部