期刊文献+

数据挖掘在儿童培训机构客户关系管理中的应用

Application of data mining in CRM of children training institute
下载PDF
导出
摘要 针对Apriori关联规则算法需要多次扫描事务数据库及产生的候选集庞大的瓶颈问题,提出一种不产生候选项目集,即可产生项目集的新算法,对数据的处理次数大大减少,提高了挖掘效率。并结合在儿童培训机构客户关系管理(CRM)中客户选择的培训内容的具体应用分析,阐明了基于Apriori改进算法的CRM数据挖掘对于儿童培训机构增强竞争优势的重要意义。 Concerning the bottleneck of classical Apriori algorithm which need scan the transaction database multiple times and might produce large candidate item sets, a new Apriori algorithm was proposed. The new algorithm could produce the item sets without producing candidate item sets, thus greatly decreased the dealing times with data and improved the efficiency of data mining. The new algorithm was applied to analyze the chosen training items in the children training institute, expounding the important meaning for increasing the competition of the improved Apriori algorithm in CRM of children training institutes.
出处 《计算机应用》 CSCD 北大核心 2009年第5期1477-1479,共3页 journal of Computer Applications
关键词 数据挖掘 儿童培训机构 客户关系管理 APRIORI算法 频繁集 data mining children training institute Customer Relationship Management (CRM) Apriori algorithm frequent itemset
  • 相关文献

参考文献6

  • 1AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large database, FJ9839 [ R]. San Jose, CA, USA: IBM Almaden Research Center, 1994:78 - 80.
  • 2HAN J. Discovery of muhiple-level association rules from large databases [ C]//Proceedings of the 21th International Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1995:402 -431.
  • 3唐敏.关联规则挖掘算法在超市销售分析中的应用[J].计算机科学,2006,33(2):149-150. 被引量:12
  • 4徐会敏.关联规则在旅行社CRM中的应用.电脑知识与技术,2007,2(12):1508-1510.
  • 5[加]HANJ,KAMBERM.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2004.
  • 6王翠茹 王少华.关联规则经典算法的一种改进.中国科技文献,2008,(1):3-6.

二级参考文献6

  • 1闫莺,王大玲,于戈.支持个性化推荐的Web页面关联规则挖掘算法[J].计算机工程,2005,31(1):79-81. 被引量:19
  • 2Agrawal R,Imielinski T,Swami A.Mining Association RulesBetween Sets of Items in Large Databases [J].In:Proc.of ACM SIGMOD Conference on Management of Data,1993.207~216
  • 3Agrawal R,Srikant R.Fast Algorithms for Mining AssociationRules [J].In:Proc.of International Conference on VeryLarge Databases,1994.487~499
  • 4Han J,Pei J,Yin Y.Mining Frequent Patterns Without Candidate Generation.In:Proc.of ACM-SIGMOD Conference,2000.1~12
  • 5Wang K,Tang L,Han J,et al.Top Down FP-growth for Association Rule Mining.In:Proc.of PAKDD2002,2002.334~340
  • 6Han J,JianYong,Lu Y P,et al.Mining Top-K Frequent Closed Patterns Without Minimum Support.In:ICDM,2002.211~218

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部