期刊文献+

采用遗传算法对AVR片内RC校频处理

Frequency Calibration for On-chip RC Oscillator of AVR Using Genetic Algorithms
下载PDF
导出
摘要 介绍了一种使用遗传算法对AVR片内RC振荡器进行实时校频的方法。以AVR片内高精度时钟单元RTC为时基控制单元,以标准时间内MCU定时器的计数值为控制目标,采用遗传控制策略搜索对应MCU理想时钟频率的OSCCAL寄存器最佳设置值,快速准确地对RC振荡频率进行校准,为CPU提供具有高抗干扰特性的精确时钟。OSCCAL寄存器参数码的初始种群通过C语言库中的rand()函数随机产生,通过复制、交叉、变异等遗传操作获得各代的适应值。其中,种群复制按向最优解迫近的原则操作,交叉匹配按随机配对交换码符的方法操作,变异概率取值0.01以保证遗传算法的稳定性。给出了实时校频遗传算法的基本操作程序以及10次迭代的搜索结果,表明该算法的优化效果十分明显。 This paper described a method to use Genetic Algorithms to calibrate the on-chip RC oscillator of AVR real-time.Take the high precision on-chip RTC(real time clock) as the time base control unit,using Genetic Algorithms to search the best OSCCAL register value which will make the on-chip RC oscillator to generate a high precision clock for the MCU.This method can be used fast and real-time,so that the CPU will get a stable clock source.The initial population of OSCCAL register participation digital was randomly generated by the function of rand() from C language library.They get all generations of fitness through genetic manipulation such as reproduction,crossover,mutation and so on.Among them,the population reproduce according to the principle that close to the optimal solution,cross-matching pair exchanged code randomly at the method of operation,mutation probability values of 0.01 to ensure the stability of genetic algorithm.Given the basic operating procedures of real time genetic algorithm and 10 iterations of search results,show that the algorithm optimization effect is very obvious.
作者 周斌 崔葛瑾
出处 《微型电脑应用》 2009年第4期54-57,6,共4页 Microcomputer Applications
关键词 遗传算法 电阻电容振荡器 频率校准 Genetic algorithm Resistor-capacitor oscillator Frequency calibration
  • 相关文献

参考文献5

二级参考文献41

  • 1郭旭红,芮延年,李军涛,朱圣领.基于遗传算法模糊智能控制系统的研究[J].苏州大学学报(工科版),2004,24(5):38-41. 被引量:2
  • 2蔡煜东.运用改进的遗传算法拟合离子选择电极工作曲线[J].分析化学,1995,23(6):640-643. 被引量:5
  • 3蔡煜东.分析化学中非线性多元函数拟合的遗传算法[J].分析化学,1995,23(7):790-792. 被引量:5
  • 4李军.用于最优化的计算智能[M].北京:清华大学出版社,1999..
  • 5Holland J H. Adaptation in Natural and artificial Systems[M]. Ann Arbor:The University of Michigan Press,1975.
  • 6Cong Peisheng,Li Tonghua. Numeric genetic algorithm[J]. Anal., Chem. Acta., 1994,293:191-203.
  • 7Leardi R,Lupiancz Gonzalez A. Genetic algorithms applied to feature selection in PLS regression:how and when to use them[J]. Chemometrics and intelligent laboratory systems,1998,41(2):195-208.
  • 8Barros A S,Rutledge D N. Genetic algorithms applied to the selection of principal components[J]. Chemometrics and intelligent laboratory systems,1998,40(1):65-82.
  • 9J. H. Holland. Adaptation in Natural and Artificial System[M]. The Univ Michigan Press, 1975.
  • 10De Jong K. Learning with Genetic Algorithm[J]. An Overview. Machine Learning, 1988,3(2,3): 121-138.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部