期刊文献+

鲁棒区间类型2可能性C均值聚类 被引量:3

Robust interval type-2 possibilistic C-means clustering
原文传递
导出
摘要 提出了一种鲁棒区间类型2可能性C均值(IT2PCM)聚类规则,其实质是采用交替迭代结构进行聚类的交替类估计,但隶属度函数通过区间类型2模糊集合来选择.在提出的方法中,类原型的更新方程通过将降型与解模糊相结合的形式来计算.在鲁棒统计的框架下,通过φ函数的分析指出这种更新方程对类内不确定的模式以及野点具有鲁棒性.最后,与现有的鲁棒聚类规则进行比较,仿真结果说明了IT2PCM良好的鲁棒性. This paper presents alternating iteration architecture for clustering, robust interval type-2 possibilistic C-means (IT2PCM) clustering algorithm. It is actually alternating cluster estimation, but membership functions are selected directly with interval type-2 fuzzy sets by the users. In the proposed method, the cluster prototype update equation is calculated by type reduction combined with defuzzification. It is robust to uncertain inliers and outtiers on the basis of its φ function analysis in the framework of robust statistics. Simulation results of comparing IT2PCM with existing methods show the nice robust properties of IT2PCM.
出处 《控制与决策》 EI CSCD 北大核心 2009年第4期503-507,共5页 Control and Decision
基金 国家自然科学基金项目(60674057) 高等学校博士学科点专项科研基金项目(20060613003)
关键词 区间类型2 鲁棒 可能性 交替类估计 Interval type-2 Robust Possibilistic Alternating cluster estimation
  • 相关文献

参考文献12

  • 1莫建林,张卫东,许晓鸣.鲁棒辨识研究的现状[J].控制与决策,2002,17(3):257-263. 被引量:1
  • 2Dave R N, Krishnapuram R. Robust clustering methods: A unified view[J]. IEEE Trans on Fuzzy Systems, 1997, 5(2): 270-293.
  • 3Krishnapuram R, Keller J M. The possibilistic C-means algorithm: Insights and recommendation [J]. IEEE Trans on Fuzzy Systems, 1996, 4(3): 385-393.
  • 4Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition[J]. IEEE Trans on Systems, Man and Cybernetics, 1999, 29(6): 778-785.
  • 5Runkler T A, Bezdek J C. Alternating cluster estimation: A new tool for clostering and function approximation [J]. IEEE Trans on Fuzzy Systems,1999, 7(4): 377-393.
  • 6Zhang J S, Leung Y W. Improved possibilistie C-means clustering algorithm [J]. IEEE Trans on Fuzzy Systems, 2004, 12(2): 209-217.
  • 7Pal N R, Pal K, Keller J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Trans on Fuzzy Systems, 2005, 13(4): 517-530.
  • 8Liang Q L, Mendel J M. Interval type 2 fuzzy logic systems: Theory and design[J]. IEEE Trans on Fuzzy Systems, 2000, 8(5): 535-550.
  • 9Mendel J M, Wu H W. Type-2 fuzzistics for symmetric interval type-2 fuzzy sets[J]. IEEE Trans on Fuzzy Systems, 2006, 14(6): 781-792.
  • 10Mendel J M. Advances in type-2 fuzzy sets and systems[J]. Information Sciences, 2007, 177 (1): 84- 110.

二级参考文献48

  • 1黄学俊,王书宁,戴建设.l_1系统辨识中的代数算法及其Worst-case误差[J].控制与决策,1996,11(1):52-57. 被引量:4
  • 2方华京,黄心汉.L1鲁棒辨识收敛性态的研究[J].控制与决策,1996,11(3):309-312. 被引量:2
  • 3Doyle J C, Francis B A, Tannehbaum A. Feedback control theory[M]. New York: Macmillan,1992.
  • 4Ljung L.系统辨识[M].袁震东译.上海:华东师范大学出版社,1998.
  • 5Ninness B, Goodwin G C. Estimation of model quality[J]. Automatica,1995,31(12):1771-1797.
  • 6Gevers M. Connecting identification and robustcontrol: A new challenge[A]. Proc 9th IFAC Symp on System Ident[C].Budapest,1990.1-10.
  • 7Partington J R, Makila P M. Analysis of linearmethods for robust identification in l1[A]. Proc 10th IFAC Symp on System Ident[C].Copenhagen,1994.1832-1837.
  • 8Giarre L, Kacenicz B Z, Milanese M. Model quality evaluation in set membership identification[J]. Automatica,1997,33(6):1133-1139.
  • 9Deller J R, Nayeri M, Liu M S. Unifying the landmark development in optimal bounding ellipsoid identification[J]. Int J Adaptive Control & Signal Proc,1994,8:43-60.
  • 10Chisci L, Garulli A, Vicino A, et al. Bock recursive parallelotopic bounding in set membership identification[J]. Automatica,1998,34(1):15-22.

同被引文献18

  • 1刘笛,朱学峰,苏彩红.一种新型的模糊C均值聚类初始化方法[J].计算机仿真,2004,21(11):148-151. 被引量:19
  • 2朱喜林,武星星,李晓梅.基于改进型模糊聚类的模糊系统建模方法[J].控制与决策,2007,22(1):73-77. 被引量:17
  • 3Hopner F, Hoppner F, Klawonn F, et al. Fuzzy cluster analysis: Methods for classification, data analysis and image recognition[M]. Chichester: Wiley, 1999: 5-31.
  • 4Bezdek J C, Ehrlich R, Full W. FCM: The fuzzy C-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2): 191-203.
  • 5Gao X B. Fuzzy cluster analysis and its applications[M]. Xi’an: Xidian University Press, 2004: 49-60.
  • 6Zhang D Q, Chen S C. Clustering incomplete data using kernel-based fuzzy ??-means algorithm[J]. Neural Processing Letters. 2003, 18(3): 155-162.
  • 7Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Trans on Medical Imaging, 2002, 21(3): 193-199.
  • 8Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(3): 199-249.
  • 9Mendel J M. Uncertain rule-based fuzzy logic systems: Introduction and new direction[M]. New Jersey: Prentice Hall, 2001: 287-350.
  • 10Mendel J M. Type-2 fuzzy sets and systems: An overview[J]. Computational Intelligence Magazine IEEE, 2007, 2(1): 20-29.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部