期刊文献+

钴湿法冶炼萃取过程中的组分含量软测量 被引量:4

Soft sensing for component content in cobalt hydrometallurgy extraction process
原文传递
导出
摘要 提出了一种钴湿法冶炼萃取组分含量混合建模方法.该模型由基于物料衡算关系的动态机理模型与基于萃取平衡实验数据的RBF神经网络模型组成.机理模型作为描述过程动态行为的整体框架,RBF神经网络用来辨识机理模型中的未知函数关系.在上述混合模型的基础上,还提出了一种模型校正策略,进一步提高了模型的精确性.将所建立的混合模型应用于实际湿法冶炼生产过程中,结果表明该方法具有良好的估计性能. A hybrid modeling scheme is presented in this paper for component content in cobalt hydrometallurgy extraction process, which is composed of first principle model based on material balance and RBF neural networks models based on the data of extraction balance experiment. First principle model describes dynamic behavior of process as the rough framework. RBF neural networks are employed to identify the unknown function relationship. Based on the hybrid model above, a model correction strategy is also proposed to make the model more accuracy. Applying the hybrid model to practical industrial process of hydrometallurgy, the results show that the method has satisfactory estimation performance.
出处 《控制与决策》 EI CSCD 北大核心 2009年第4期632-636,共5页 Control and Decision
基金 国家863计划项目(2006AA060201)
关键词 湿法冶炼 萃取 混合模型 RBF神经网络 软测量 Hydrometallurgy Extraction Hybrid model RBF neural networks Soft sensor
  • 相关文献

参考文献2

二级参考文献39

  • 1Tham M T, Morris A J, Montague G A. Soft-sensors for process estimation and inferential control [J]. J.Process Control, 1991,1:3.
  • 2Thompson M L, Kramer A. Modeling chemical processes using prior knowledge and neural networks [J]. AIChE Journal, 1994,40(8) : 1328.
  • 3Li Han, Chen Zhichuan, Zho Jiaju. A Modified Mathematical Model of Countercurrent Extraction for Rare Earth Separation.New Frontiers in Rare Earth Science and Application, Beijing:Science press, 1985. 446.
  • 4Funahashi K. On the approximate realization of continuous mapping by neural network [J]. Neural Networks, 1989, (2):183.
  • 5Willis M J, et al. Artificial neural netwolks of process estimation and control [J]. Automatica, 1992, 28(6): 1181.
  • 6Burger M,Neubauer A.Error bounds for approximation with neural networks [J].Journal of Approximate Theory,2001,112(2):235-250.
  • 7Xin Li.On simultaneous approximations by radial basis function neural networks [J].Applied Mathematics and Computation,1998,95(1):75-89.
  • 8Krzyzak A,Linder T,Lugosi C.Nonparametric estimation and classification using radial basis function nets and empirical risk minimization [J].IEEE Trans.on Neural Networks,1996,7(2):475-487.
  • 9Xudong Wang,Rongfu Luo,Huihe Shao.Designing a Soft Sensor for Distillation Column with the Fuzzy Distributed Radial Basis Function Neural Network.Proceeding of the 35th conference of decision and control,1996,12:1714-1719.
  • 10Kuo R J,Cohen P H.Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network [J].Neural Network,1999,12(2):355-370.

共引文献32

同被引文献38

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部