期刊文献+

介孔纳米SiO_2致小鼠巨噬细胞株RAW264.7细胞毒性与氧化损伤 被引量:1

In vitro Cytotoxicity and Oxidative Damage of Mesoporous Nano-SiO_2 on RAW264.7 Macrophages
原文传递
导出
摘要 [目的]探讨介孔纳米SiO2对小鼠巨噬细胞株RAW264.7细胞的毒性和氧化损伤作用。[方法]设4个浓度组(2.5、10、50、100μg/mL)和生理盐水对照组,染毒24h后,用四甲基偶氮唑盐(MTT)方法观察细胞毒性,并根据染毒后细胞的总蛋白(TP)、乳酸脱氢酶(LDH)、一氧化氮(NO)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)和丙二醛(MDA)的变化情况分析介孔纳米SiO2的细胞毒性和氧化损伤作用。[结果]10、50和100μg/mL浓度组细胞存活率随着染毒浓度的升高而降低,差异有统计学意义;50、100μg/mL浓度组细胞及其上清液中TP、LDH、NO和MDA含量随染毒浓度增加而升高,而GSH和SOD含量降低;而且与细胞发生融解破碎、间隙加大等形态学改变情况相符。[结论]介孔纳米SiO2对体外培养巨噬细胞株RAW264.7具有细胞毒性和氧化损伤作用,且随剂量的加大而增强。 [Objective] To study the in vitro cytotoxicity and oxidative damage of mesoporous nano-Si02 on RAW264.7 macrophages, [ Methods ] The RAW 264.7 cells were treated with different concentrations of mesoporous nano-Si02( 2.5, 10, 50, 100μg/mL )and saline control for 24h. MrIT assays were applied for testing macrophage cytotoxicity in vitro, which were based on mitochondrial activity evaluation. Total protein (TP), lactate dehydrogenase (LDH), nitrogen monoxide (NO), glutathion ( GSH ), superoxide dismutase ( SOD ) and malondialdehyde ( MDA ) in supernatant and intra-cellular fluid were determined. The morphologic change of RAW 264.7 was also observed. [ Results ] Compared with saline control, the viability of RAW264.7 cell was decreased significantly after exposed to mesoporous nano-SiO2. The levels of TP, LDH, NO and MDA in exposed groups of 50μg/mL and 100μg/mL dosage were higher, while GSH and SOD levels were lower than in the saline control group, which were in accordance with the morphologic change on RAW264.7 cell exposed to mesoporous nano-SiO2. [ Conclusion ] Mesoporous nano- Si02 can induce cytotoxicity and oxidative demage on RAW264.7 macrophage.
出处 《环境与职业医学》 CAS 北大核心 2009年第2期175-177,181,共4页 Journal of Environmental and Occupational Medicine
基金 上海市科学技术委员会国际合作项目(编号:05520708)
关键词 介孔纳米SiO2 细胞毒性 氧化损伤 mesoporous nano-SiO2 cytotoxicity oxidative demage
  • 相关文献

参考文献13

  • 1金一和,孙鹏,张颖花.纳米材料对人体的潜在性影响问题[J].自然杂志,2001,23(5):306-307. 被引量:44
  • 2HONNONS S, PORCHER J M.In vivo experimental model for silicosis [ J ]. J Environ Pathol Toxicol Oncol, 2000, 19( 4 ): 391-400.
  • 3FERIN J, OBERDOSTER G, PENNY D P. Pulmonary retention of uhrafine and fine particles in rats [ J ]. Am J Respir Cell Mol Biol, 1992, 6( 5 ): 535-542.
  • 4ZHANG Q, KUSAKA Y, DONALDSON K. Comparative pulmonary responses caused by exposure to standard cobalt and uhrafine cobalt [ J ]. J Oeeup Health, 2000, 42( 4 ): 179-184.
  • 5ZHANG Q, KUSAKA Y, ZHU X, et al. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation[ J ]. J Occup Health, 2003, 45( 1 ): 23-30.
  • 6LIN WS, HUANG YW, ZHOU X D, et al. In vitro toxicity of silica nanoparticles in human lung cancer cells [ J ]. Toxicol Appl Pharmacol, 2006, 217( 3 ): 252-259.
  • 7CALCABRINI A, MESCHINI S, MARRA M, et al. Fine environmental particulate engenders alterations in human lung epithelial A549 cells [J ]. Environ Res, 2004, 95( 1 ): 82-91.
  • 8NEL A, XIA T, MADLER L, et al. Toxic potential of materials at the nanolevel[ J ]. Science, 2006, 311 ( 5761 ): 622-627.
  • 9MONTEIRO-RIVIERE N A, NEMANICH R J, INMAN A O, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes[ J ]. Toxicol Lett, 2005, 155( 3 ): 377-384.
  • 10DING L, STILWELL J, ZHANG T, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast [ J ]. Nano Lett, 2005, 5 ( 12 ): 2448-2464.

二级参考文献15

共引文献99

同被引文献35

  • 1Tsai CH,Vivero -Escoto JL,Slowing II,et al. Surfactant -assistedcontrolled release of hydrophobic drugs using anionic surfactanttemplated mesoporous silica nanoparticles [J]. Biomaterials, 2011,32 :6234-6244.
  • 2Muthu MS,Wilson B. Multifunctional radionanomedicine:a novelnanoplatform for cancer imaging and therapy[J]. Nanomedicine ( Lond ),2010,5:169-171.
  • 3Son SJ,Bai X,Lee SB. Inorganic hollow nanoparticles and nanotubes innanomedicine Part 1. drug/gene delivery applications [J]. Drug DiscovToday, 2007,12:650-656.
  • 4RavinaM,Cubillo E,Olmeda D,et al. Hyaluronic acid/chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy:an application forpDNA and siRNA delivery[J]. Pharm Res,2010,27:2544-2555.
  • 5LordH,Kelley SO. Nanomaterials for ultrasensitive electrochemicalnucleic acids biosensing[J]. Mater Chem,2009,19:3127-3134.
  • 6FerrisDP,Lu J, Gothard C,et al. Synthesis of biomolecule -modifiedmesoporous silica nanoparticles for targeted hydrophobic drug deliveryto cancer cells[J]. Small,2011,7: 1816-1826.
  • 7YallapuMM,Foy SP,Jain TK,et al. PEG -functionalized magneticnanoparticles for drug delivery and magnetic resonance imagingapplications[J]. Pharm Res,2010,27:2283-2295.
  • 8CheangTY,Tang B,Xu AW,et al. Promising plasmid DNA vector basedon APTES-modified silica nanoparticles[J]. Int J Nanomedicine, 2012,7:1061-1067.
  • 9HansenSF,Michelson ES,Kamper A,et al. Categorization framework toaid exposure assessment of nanomaterials in consumer products [J].Ecotoxicology, 2008,17:438-447.
  • 10LIY,Sun L,Jin MH,et al. Size -dependent cytotoxicity of amorphoussilica nanoparticles in human hepatom HepG2 cells [J]. Toxicol in viro,2011,25:1343-1352.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部