期刊文献+

中耳病变及人工镫骨形体研究 被引量:13

Research on pathological changes of middle-ear and artificial stapes
下载PDF
导出
摘要 目的研究听骨韧带、肌腱硬化和切除以及人工镫骨置换对声音传导的影响。方法基于CT扫描数据,通过自编C++程序读取CT数据中体单元建立人耳结构几何模型,将几何模型导入PATRAN中赋予材料参数、设置关节接触面以及相应其他边界条件生成数值模型。结果利用人耳数值模型进行正常耳和病变耳的谐响应分析,得到正常耳和病变耳镫骨底板和鼓膜凸的振幅变化规律。并由此构建了套型人工镫骨。结论正常耳的模拟结果与实验测试结果吻合,证明了本模型准确性,可以模拟人传声功能。本模型模拟病变耳的计算结果可以从力学角度解释病变对声音传导的影响,为病变耳治疗提供参考。本文的套型人工镫骨较我国临床用的环型人工镫骨更吻合人耳的生理功能,其重建听力效果更好。 Objective To investigate the influence of cirrhosis and detachment of ligaments, tendons and stapes replacement prosthesis on sound transmission for human ear. Method Based on CT data, the geometrical model of human ear is established bya C + + program developed bythe authors. The numerical model is then built up through the finite element software PATRAN where the geometrical model is imported and the material properties, interface of the joints and boundary conditions were defined. Result Amplitude variation laws of the stapes footplate and umbo were obtained by comparing the frequency response analytic results between the normal ear and pathological ear. Moreover, the sheath shaped stapes replacement prosthesis was then constructed based on the analysis of this numerical model. Conclusions The accuracy of the mod- el has been validated bythe well matched computational and experimental results in normal ear, and it can be used to simulate the human sound transmission. The computational results from the pathological ear can explain the effect of lesion for sound conduction from the mechanical view, and provide reference for ear illness treatment. Compared with the effect of ring shaped stapes prosthesis commonly used in China, the sheath shaped stapes replacement prosthesis is more suitable for physiological function of human ear and the hearing recovering effect could be better.
出处 《医用生物力学》 EI CAS CSCD 2009年第2期118-122,共5页 Journal of Medical Biomechanics
基金 上海大学博士点基金项目 博士创新基金资助项目(A.16-0118-07-002)
关键词 人耳 传导振动 中耳病变 人工镫骨假体 Hum an ear Transmission vibration Pathological changes Artificial stapes
  • 相关文献

参考文献15

  • 1Jont B. Allen P, Jeng H. Evaluation of human middle ear function via an acoustic power assessment[ J]. Journal of Rehabilitation Research & Development,2005, 42(5): 63-78.
  • 2Reza M. Anatomy and anthropometry of human stapes [J]. American Joumal of Otolaryngology-Head and Neck Medicine and Surgery,2008, 29:42-47.
  • 3Chen H, Toshihiko O, Shoichi E. Scanning electron microscopic study of the human auditory ossicles [J]. Ann Anat,208,190: 53-58.
  • 4Kurokawa H, Richard L. Sound pressure gain produced by the human middle ear[J].Otolaryngol Head Neck Surg, 1995, 113(4):349-355.
  • 5Huber A, Linder T, Ferrazzini M ,et al, Intraoperative assessment of stapes movement[ J ]. Ann Otol Rhinol Laryngol,2001,110 :31-35.
  • 6Tao C, Rong Z. Mechanical Properties of Stapedial Tendon in Human Middle Ear[ J]. Journal of Biomechanical Engineering,2007,129 .913-918.
  • 7Chia-Fone Lee, Peir-Rong Chen, Wen-Jeng Lee, Computer aided three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis [ J ]. Biomedical Engineering, 2006, 18(5):214-221.
  • 8Rong Z. Gan Bin Feng Q, Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission [J]. Annals of Biomedical Engineering, 2004, 32 ( 6 ) : 847 -859.
  • 9Lee CF, Chen JH, Chou YF, etal. Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage mydngoplasty: a finite element analysis [ J]. Laryngoscope, 2007, 117(4):725-730.
  • 10Li Q, Robert J, Funnell W, et al. Funnell. A nonlinear finite-element model of the newborn middle ear[J]. J Acoust Soc Am, July 2008,124 (1): 337-347.

二级参考文献38

  • 1马芙蓉,Thomas Linder,Alex Huber,Heidi Felix,Anita Pollak.新鲜颞骨模型建立在中耳传声机制研究中的作用[J].中国耳鼻咽喉头颈外科,2005,12(6):359-361. 被引量:9
  • 2Hudde H, Weistenhofer C. A three-dimensional circuit model of the middle ear. Acustica United with Acta Acustica, 1997, 83(2): 535-549
  • 3Zwislocki J. Analysis of the middle-ear function. Part I: Input impedance. The Journal of the Acoustical Society of America, 1962, 34(9B): 1514-1523
  • 4Rabbitt RD, Holmes MH. A fibrous dynamic continuum model of the tympanic membrane. The Journal of the Acoustical Society of America, 1986, 80(6): 1716-1728
  • 5Funnell WRJ, Laszlo CA. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am, 1978, 63(5): 1461-1467
  • 6Wada H, Metoki T. Analysis of dynamic behavior of human middle ear using a finite method. The Journal of the Acoustical Society of America, 1992, 92(6): 3157-3168
  • 7Beer H J, Bornitz M, et al. Modeling of components of the human middle ear and simulation of their dynamic behaviour. Audiology & Neuro-Otology, 1999, 4(3-4): 156-162
  • 8Takuji Koike, Hiroshi Wada, Toshimitsu Kobayashi. Modeling of the human middle ear using the finite-element method. The Journal of the Acoustical Society of Arnerica, 2002, 111(3): 1306-1317
  • 9Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 2004, 32(6): 847-859
  • 10Lee Chia-Fone, Chen Peir-Rong, Lee Wen-Jeng, et al. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Laryngoscope, 2006, 116(5): 711-716

共引文献60

同被引文献97

引证文献13

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部