期刊文献+

转子系统的频率可靠性分析 被引量:6

Natural frequency reliability analysis of rotor system
下载PDF
导出
摘要 根据具有随机结构参数的转子系统的固有频率与激振频率差的绝对值不超过规定值的关系准则,定义了转子系统共振问题的可靠性模式和系统的可靠度,提出了避免转子系统发生共振的频率可靠性分析方法,根据失效准则,定义转子系统共振为串联系统问题,应用随机摄动技术、概率统计方法和可靠性理论,对具有随机结构参数的转子系统共振问题的准失效分析方法进行了探索和研究。 Based on the relation criterion that the absolute value of frequency difference between the system and the excitation may not exceed a special value, the reliability mode and the safety probability of the rotor system with random parameters are defined. With the aid of the failure criterion, the resonance of rotor system is defined as series mode and the frequency relia- bility analysis method for avoiding the resonant is carried out. The quasi-failure analysis method for resonant problem of the rotor systems with random parameters is investigated by the random perturbation technique, probability statistics method and the reliability theory.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第2期218-220,共3页 Journal of Vibration Engineering
基金 国家高科技研究发展计划资助项目(2007AA04Z442) 国家自然科学基金资助项目(50875039)
关键词 转子系统 共振 频率可靠性 rotor system resonance natural frequency reliability
  • 相关文献

参考文献12

  • 1Lin Y K, Cai G Q. Probabilistic Structural Dynamics Advanced Theory and Applications [M]. New York: McGraw-Hill, 1995.
  • 2Bergman L A, Heinrich J C. On the reliability of the linear oscillator and systems of coupled oscillators[J]. International Journal for Numerical Methods in Engineering, 1982, 18:1 271-1 295.
  • 3Zhang Y M, Wen B C, Liu Q L. First passage of uncertain single degree-of-freedom nonlinear oscillators [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(4) : 223-231.
  • 4Zhang Y M, Wen B C, Liu Q L. Reliability analysis for random MDOF nonlinear systems with indepen- dence failure mode [A]. Proceedings of Asia-Pacific Vibration Conference[C]. Kyongju, Korea, November, 1997:987-990.
  • 5Zhang Y M, Wen B C. Reliability analysis of random multi-degree-of-freedom nonlinear vibration systems [A]. Proceedings of the International Conference on Vibration Engineering[C]. Dalian, P. R. China, 1998: 73-78.
  • 6张义民,闻邦椿.具有独立失效模式的多自由度非线性振动系统的可靠性分析[J].航空学报,2002,23(3):252-254. 被引量:13
  • 7张义民,王顺,刘巧伶,闻邦椿.具有相关失效模式的多自由度非线性结构随机振动系统的可靠性分析[J].中国科学(E辑),2003,33(9):804-812. 被引量:45
  • 8Zhang Y M, Chen S H, Liu Q L, et al. Stochastic perturbation finite elements[J]. Computers & Structures, 1996, 59(3):425-429.
  • 9Zhang Y M, Wen B C, Chen S H. PFEM formalism in Kronecker notation [J]. Mathematics and Mechanics of Solids, 1996, 1 (4):445-461.
  • 10Wen B C, Zhang Y M, Liu Q L. Response of uncertain non-linear vibration systems with 2D matrix functions [J]. Nonlinear Dynamics, 1998, 15 (2): 179-190.

二级参考文献28

  • 1张义民,林逸,刘巧伶.当联合概率密度未知时随机结构可靠性分析的随机有限元法[J].吉林工业大学学报,1993,23(4):9-14. 被引量:3
  • 2张义民 刘巧伶.多随机参数结构可靠性分析的随机有限元法[J].东北工学院学报,1992,13:97-99.
  • 3张义民.动态随机结构系统的可靠性分析[M].长春:吉林科学技术出版社,2000.15~22.
  • 4[1]Zhang Y M, Wen B C, Liu Q L. First passage of uncertain single degree-of-freedom nonlinear oscillators[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(4): 223-231.
  • 5[2]Vetter W J. Matrix calculus operations and Taylor expansions[J]. SIAM Review, 1973, 15: 352-369.
  • 6[3]Zhang Y M, Chen S H, Liu Q L, et al. Stochastic perturbation finite elements[J]. Computers & Structures, 1996, 59(3): 425-429.
  • 7[4]Zhang Y M, Wen B C, Chen S H. PFEM formalism in Kronecker notation[J]. Mathematics and Mechanics of Solids, 1996, 1(4): 445-461.
  • 8[5]Wen B C, Zhang Y M, Liu Q L. Response of uncertain nonlinear vibration systems with 2D matrix functions[J]. Int J Nonlinear Dynamics, 1998, 15(2): 179-190.
  • 9[6]Cramer H. Mathematical methods of statistics[M]. New Jersey: Princeton University Press, 1964.
  • 10Ang A H-S, Tang W H. Probability Concepts in Engineering Planning and Design. New York: John Wiley & Sons, 1984.

共引文献51

同被引文献205

引证文献6

二级引证文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部