摘要
针对连续性抽样调查中如何提高连续调查数据准确性的问题,本文引入时间序列分析方法,分别考虑连续性抽样调查中的重复样本和轮换样本等不同情况,建立了连续性抽样调查下的状态空间模型,利用成熟的卡尔曼滤波估计方法给出了总体均值的估计量。由于状态空间模型及卡尔曼滤波估计方法能够充分利用各期连续样本的调查信息,给出了精度更高的估计量,从而能够产生更加准确的连续性时间序列数据。
In order to improve the precision of successive data under successive sampling survey, this paper uses the time series analysis. Respectively considering repeated sample and rotation sample, state-space model under successive survey is constructed and the estimators of population mean are presented through Kalman filter methods. These estimators would be more precise because more bypassed information can be used through the state-space model and Kalman filter estimation. Therefore, the precision of successive time series data would be improved further more.
出处
《统计研究》
CSSCI
北大核心
2009年第4期80-84,共5页
Statistical Research
基金
国家社会科学基金项目"连续性抽样调查方法及其应用研究"(08BTJ010)
全国统计科学研究重点项目"建立连续性抽样调查体系的问题研究"(2007LZ038)阶段性成果