期刊文献+

Kurzweil方程的Φ-变差稳定性 被引量:4

Φ-variational Stability for Kurzweil Equations
下载PDF
导出
摘要 本文将Φ-有界变差函数理论与Kurzweil方程理论结合起来,首次给出了Φ-变差稳定性概念,讨论了Kurzweil方程Φ-有界变差解的稳定性,建立了Φ-界变差解Φ-变差稳定性和渐近Φ-变差稳定性的Ljapunov型定理。这些结果是对Kurzweil方程有界变差解变差稳定性的本质推广。 In this paper, the bounded Ф-variation function and the generalized ordinary differential equation are unified, the concept of Ф-variational stability is established and the stability of the bounded Ф-variation solutions to Kurzweil equations is discussed. The Ljapunov type theorems for Ф-variational stability and asymptotically Ф-variational stability of the bounded Ф-variation solutions are established. These results are an essential generalization of variation stability of bounded variation solutions to Kurzweil equations.
出处 《工程数学学报》 CSCD 北大核心 2009年第2期233-242,共10页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10771171) 甘肃省"555创新人才工程"资助项目 西北师大科技创新工程资助项目
关键词 KURZWEIL方程 Φ-有界变差解 Φ-变差稳定性 Ljapunov函数 Kurzweil equation bounded Ф-variation solution Ф-variational stability Ljapunov function
  • 相关文献

参考文献11

  • 1Kurzweil J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math J, 1957, 7:418-449
  • 2Kurzweil J. Vorel Z.Continuous dependence of solutions of differential equations on a parameter[J]. Czechoslovak Math J, 1957, 23:568-583
  • 3Kurzweil J. Generalized ordinary differential equations[J]. Czechoslovak Math J, 1958, 8:360-389
  • 4Schwabik S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992
  • 5Schwabik S. Generalized volterra integral equations[J]. Czechoslovak Math J, 1982, 32:245-270
  • 6Artstein Z. Topological dynamics of ordinary differential equations and Kurzweil equations[J]. J Differential Equations, 1977, 23:224 -243
  • 7李宝麟,薛小平.x'=g(x,t)+h(t)型方程的拓扑动力系统与Kurzweil-Henstock积分[J].数学学报(中文版),2003,46(4):795-804. 被引量:9
  • 8Musielak J, Orlicz W. On generalized variation(Ⅰ)[J]. Studia Math, 1959, 18:11-41
  • 9Lesniewz R, Orlicz W. On generalized variation(Ⅱ)[J]. Studia Math, 1973, 45:71-109
  • 10李宝麟,吴从炘.Kurzweil方程的Φ-有界变差解[J].数学学报(中文版),2003,46(3):561-570. 被引量:23

二级参考文献40

  • 1王琳琳.一类高阶脉冲时滞微分方程的周期解[J].兰州大学学报(自然科学版),2006,42(4):114-118. 被引量:3
  • 2Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449.
  • 3Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583.
  • 4Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389.
  • 5Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian).
  • 6Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian).
  • 7Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992.
  • 8Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293.
  • 9Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270.
  • 10Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243.

共引文献30

同被引文献14

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部