摘要
本文利用不动点理论研究了非线性矩阵方程Hermite正定解存在及唯一性条件,并给出了解的存在区间。讨论了方程唯一解的扰动边界,并说明方程是适定的。用数值例子对以上结果作了说明。
Based on the fixed-point theory, the conditions for the existence and uniqeness of the Hermitian positive definite solutions to the equation are derived, and the existence domain of solutions is given. A perturbation bound for the unique solution to the nonlinear matrix equation is discussed, and shows that the equation is well-posed. The results are illustrated by numerical examples.
出处
《工程数学学报》
CSCD
北大核心
2009年第2期297-304,共8页
Chinese Journal of Engineering Mathematics
基金
石油大学基础研究基金(y080817)
关键词
矩阵方程
正定解
扰动边界
matrix equation
positive definite solution
perturbation bound