期刊文献+

矩阵方程X+A~*X^qA=I(0<q<1)Hermite正定解的扰动分析 被引量:2

Perturbation Analysis of the Hermitian Positive Definite Solutions of the Matrix Equation X + A~*X^qA = I(0 < q < 1)
下载PDF
导出
摘要 本文利用不动点理论研究了非线性矩阵方程Hermite正定解存在及唯一性条件,并给出了解的存在区间。讨论了方程唯一解的扰动边界,并说明方程是适定的。用数值例子对以上结果作了说明。 Based on the fixed-point theory, the conditions for the existence and uniqeness of the Hermitian positive definite solutions to the equation are derived, and the existence domain of solutions is given. A perturbation bound for the unique solution to the nonlinear matrix equation is discussed, and shows that the equation is well-posed. The results are illustrated by numerical examples.
作者 李磊 渐令
出处 《工程数学学报》 CSCD 北大核心 2009年第2期297-304,共8页 Chinese Journal of Engineering Mathematics
基金 石油大学基础研究基金(y080817)
关键词 矩阵方程 正定解 扰动边界 matrix equation positive definite solution perturbation bound
  • 相关文献

参考文献6

  • 1Reurings M, B C. Symmetric Matrix Equations[M]. The Netherland: Universal Press. 2003
  • 2李磊,张玉海.矩阵方程X+A~*X^qA=I(q>0)的Hermite正定解[J].山东大学学报(理学版),2006,41(4):32-39. 被引量:4
  • 3Akerkar R. Nolinear Functional Analysis[M]. London: Narosa Publishing House, 1999
  • 4Ivanov I G, El-Sayed S M. Properties of positive definite solution of the equation X + A^*X^-2A = I[J]. Linear Algebra Appli. 1998, 279:303-316
  • 5Zhan X, Xie J. On the matrix equation X + A^*X^-1A = I [J]. Linear Algebra Appli. 1996, 247:337-345
  • 6Zhang Y H. On Hermitian positive definie solutions of matrix equation X + A^*X^-2A = I. Linear Algebra Appl. 2003, 372:295-304

二级参考文献1

共引文献3

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部