期刊文献+

基于区间数的DS证据合成方法研究 被引量:5

Combination method for Dempster-Shafer theory of evidence based on interval numbers
下载PDF
导出
摘要 在DS证据理论的应用过程中,命题的基本概率赋值函数起到了关键的作用,传统DS证据理论中基本概率赋值函数的取值为[0,1]中的单点值。在很难准确将证据所支持命题的基本概率赋值表示为[0,1]之间的单点值时,可以用区间数形式来表示命题的基本概率赋值。在建立符合运算封闭性的区间数广义求和与广义乘积算子的基础上,定义了基于区间数的基本概率赋值函数、信任函数以及似然函数等重要概念,给出了证据合成规则,进而提出了基于区间数的DS证据合成方法。计算实例表明,与传统DS证据合成方法相比,基于区间数的DS证据合成方法具有更灵活的应用特性和更小的计算复杂度。 With good performance in dealing with uncertain information, Dempster-Shafer theory of evidence (DST) is used in many practical aspects. And the basic probability assignment (BPA) plays a great role in its application. In the traditional DST, BPA is defined as a real number belonging to the range of [0, 1]. However, it is hard to provide such real numbers accurately in its practical applica- tions. The interval numbers were introduced into DST to solve this problem. Based on the establish- ment of the general addition and multiplication operators which satisfy the close of operation, the in- terval-valued BPA function, belief function and plausibility function were defined respectively, and the rule for combining pieces of evidence was presented in detail. Thus, the preliminary structure of DST based on interval numbers was discussed. Finally, an illustrative example proved that the novel method processes some advantages such as more flexibility and less computation complexity over the traditional one in DST.
出处 《海军工程大学学报》 CAS 北大核心 2009年第2期1-5,11,共6页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(60774029)
关键词 基本概率赋值 DS证据理论 区间数 basic probability assignment Dempster-Shafer theory of evidence interval number
  • 相关文献

参考文献7

  • 1DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping [J]. Mathematical Statistics, 1967,38:325--339.
  • 2SHAFER G. A Mathematical Theory of Evidence [M].Princeton, NJ: Princeton University Press, 1976.
  • 3BEYNON M J, BUCHANAN K L. Object classification under ignorance using CaRBS: The case of the European barn swallow[J].Expert Systems with Application, 2004,27(3) : 403-- 415.
  • 4WU W, ZHANG M, LI H, et al. Knowledge reduction in random information systems via Dempster-Shafer theory of evidence [J].Information Sciences, 2005,174 : 143-- 164.
  • 5叶清,吴晓平,刘玲艳.基于BP神经网络的D-S证据理论及其应用[J].海军工程大学学报,2007,19(2):63-67. 被引量:9
  • 6CUI W, BLOCKLEY D I. Interval probability theory for evidential support [J]. International Joint Intelligent Systems, 1990,5 : 183 -- 192.
  • 7CUI W, BLOCKLEY D I, JOHN P D. Uncertain inference using interval probability theory [J].International Journal of Approximate Reasoning, 1998,19: 247-- 264.

二级参考文献9

共引文献8

同被引文献41

  • 1梁伟光,王永,韩飞,周建亮.基于证据理论的单一故障诊断方法比较研究[J].东南大学学报(自然科学版),2009,39(S1):183-188. 被引量:3
  • 2王小艺,刘载文,侯朝桢,原菊梅,郭飞.一种基于最优权重分配的D-S改进算法[J].系统工程理论与实践,2006,26(11):103-107. 被引量:16
  • 3CUI W, BLOCKLEY D I. Interval probability theory for evidential support[J]. International Joint Intelligent Systems, 1990(5):183-192.
  • 4CUI W, BLOCKLEY D I, JOHN P D. Uncertain inference using interval probability theory[J]. International Journal of Approximate Reasoning, 1998 (19): 247-264.
  • 5Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Statistics,1967,(02):325-339.
  • 6Shafer G. A mathematical theory of evidence[M].Princeton,New Jersey:Princeton University Press,1976.
  • 7Wang Y M,Taha M S. Elhag evidential reasoning approach for bridge condition assessment[J].Expert systems with application,2008,(01):689-699.
  • 8Wang Y M,Yang J B,Xu D L. Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology[J].Expert systems with application,2009,(04):8421-8430.
  • 9Lee E S,Zhu Q. An interval Dempster-Shafer approach[J].Computers & Mathematics with Applications,1992,(07):89-95.
  • 10Denoeux T. Reasoning with imprecise belief structures[J].INTERNATIONAL JOURNAL OF APPROXIMATE REASONING,1999,(01):79-111.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部