期刊文献+

支持向量机在桩基低应变检测中的应用 被引量:2

The Application of Support Vector Machine to Low Strain Integrity Testing of Foundation Piles
下载PDF
导出
摘要 桩基础属于隐蔽工程,其完整性检测的优劣受人为的影响因素较多。由于支持向量机的分类算法在模式识别方面的优越性,其学习性能出色,推广能力强。为了克服桩基础检测质量受人为因素影响较多之缺点,通过小波分析提取影响桩身质量的因素,利用支持向量机的分类算法判断桩基完整性。训练时以影响桩身质量的因素作为输入参数,训练和测试结果表明该方法能快速有效的对桩基质量进行模式识别。 Foundation piles are covert engineering, whether the testing result is good rest with the testing man. The support vector machine has advantages in pattern identified and it is also good in learning and application prospects. In order to overcome the disadvantage that the results rest with the man, the wavelet analysis method is used to get the affected factors of piles, then using the classification algorithm of support vector machine to estimate the integrity of foundation piles. The affected factors of piles are input parameters during learning. The results of training and examination show that this method is speediness and convenience on the pattern identification of pile integrity.
作者 苏华
出处 《土工基础》 2009年第2期61-63,共3页 Soil Engineering and Foundation
关键词 支持向量机 桩基 低应变 检测 support vector machine, foundation piles, low strain, testing
  • 相关文献

参考文献4

二级参考文献21

  • 1胡昌华 张军波 等.基于MATLAB的系统分析与设计——小波分析[M].西安电子科技大学出版社,2000.217-232.
  • 2冯夏庭, 张奇志, 林韵梅. 矿岩设计参数神经网络预报[A], 中国岩石力学与工程学会第三次大会论文集[C], 北京:中国科学技术出版社, 1994.
  • 3Burge CJC.A Tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery, 1998, (2): 121-167.
  • 4John C Platt.Sequential minimal optimization: A fast algorithm for training support vector machines[R], Technical Report MSR-TR-98-14, Redmond, Wash: Microsoft research, 1998.
  • 5Whitma n R V. Evaluation calculated risk in geomechanical engineering[J]. J. Geotech. Engrg.,ASCE,1984,110(8):145-188.
  • 6张兴. 边坡工程的可靠性分析[A]. 见:陈祥福编. 岩土力学进展[C]. 北京:中国展望出版社,1990. 31-40.(Zhang Xing. Reliability Analysis for Slope Engineering[A]. In:Chen Xiangfu ed. Progress on Geomechanics[C]. Beijing:China Publishing House of Prospect,1990. 31-40. (in Chinese))
  • 7Cho S E,Lee S R. Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(9):756-763.
  • 8Pradeep U K,Nitin K D. Neural networks for profiling stress history of clays from PCPT data[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(7):569-579.
  • 9Vapnic V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag,1995. 126-178.
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):124-164.

共引文献117

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部