摘要
基于均匀概率空间的无穷乘积在ヒukasiewicz三值命题逻辑中引入了公式的可靠真度概念,证明了全体公式的可靠真度值之集在[0,1]中没有孤立点;利用可靠真度定义了可靠相似度和伪距离,进而建立了逻辑度量空间,证明了该空间中没有孤立点,为进一步在三值命题逻辑中展开近似推理奠定了基础。
Based on the infinite product of evenly distributed probability space,this paper introduced the theory of reliable truth degree in ヒukasiewicz 3-valued propositional logic system.It is proved that the set of reliable truth degree of all formulas has no isolated point in [0,1].The conceptions of reliable similarity degree and pseudo-metric on two formulas are defined by means of the concept of reliable truth degree of propositions.Moreover,the reliable logic metric space is built.It is proved that this space has no isolated point.Then it can provide a possible framework for approximate reasoning theory.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2009年第2期74-77,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(10771129)
河南省教育厅自然科学研究计划项目(2007110016)
关键词
可靠真度
可靠相似度
伪距离
近似推理
Reliable truth degree
Reliable similarity degree
Pseudo-metric
Approximate reasoning