期刊文献+

利用微泡浮选柱从浮选尾矿中回收微细粒级白钨矿 被引量:21

Recovery of fine scheelites from flotation tailings by flotation column
下载PDF
导出
摘要 针对湖南安化湘安钨业公司白钨浮选尾矿中微细粒级未能在浮选机中有效分选的特点,研究开发一种微泡浮选柱,该浮选柱采用微孔材质发泡,并利用专家系统控制浮选柱关键工作参数。半工业试验获得了较适宜的柱浮选工作参数:表观矿浆速率为0.27cm/s,表观气体速率为1.35cm/s。工业试验获得的精矿品位可达24.52%,回收率为43.41%,富集比达35.03。水析试验结果表明:5~10,10~19和19~38μm3个粒级的回收率均达到65%以上。试验测得的浮选柱内气泡的Sauter直径为400μm,仅为机械搅拌浮选机气泡的1/3,气泡直径减小促使浮选速率常数k显著增大,这是浮选柱能有效回收微细粒级白钨矿的主要原因。 In order to recover fine scheelites from flotation railings of cleaner circuit, a novel flotation column, which using microcellular material as bubble generator and using expert system to control key work parameters of the column, was manufactured. Pilot and full scale column flotation experiments were carried out, and interrelated work parameters of the column were obtained. The optimum work parameters are as follows: the superficial velocity of the feed 0.27 cm/s and the superficial velocity of air 1.57 cm/s. The recovery of WO3 reaches 43.41% with an average grade of 24.52%, and the enrichment ratio reaches 35.03. The recoveries of three different size fraction, 5-10μm, 10-19μm and 19-38μm, all reach 65%. Sauter diameter of the bubbles in the column is about 400μm, and smaller diameter make the flotation rate constant k increases greatly, improving flotation performance, which is the key reason that fine scheelites can be recovered.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期263-267,共5页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展计划资助项目(2007CB13602) 国家自然科学基金资助项目(50574101)
关键词 微细矿物 浮选柱 白钨矿 浮选尾矿 二次资源利用 fine particles flotation column scheelite flotation tailings recycling
  • 相关文献

参考文献16

  • 1吴荣庆,张燕如.关于对钨矿行业实行宏观调控的政策建议[J].中国钨业,2006,21(6):5-9. 被引量:10
  • 2刘文刚,魏德洲,周东琴,朱一民,贾春云.螯合捕收剂在浮选中的应用[J].国外金属矿选矿,2006,43(7):4-8. 被引量:20
  • 3Liu Q, Wannas D, Peng Y J. Exploiting the dual functions of polymer depressants in fine particle flotation[J]. Int J Miner Process, 2006, 80(2/4): 244-254.
  • 4Rubio J, Capponi F, Rodrigues R T, et al. Enhanced flotation of sulfide fines using the emulsified oil extender technique[J]. Int J Miner Process, 2007, 84(1/4): 41-50.
  • 5Demir U, Yamik A, Kelebek S, et al. Characterization and column flotation of bottom ashes from Tunebilek power plant[J]. Fuel, 2008, 87(6): 666-672.
  • 6Eisele T C, Kawatra K S. Reverse column flotation of iron ore[J]. Minerals & Metallurgical Processing, 2007, 24(1): 61-65.
  • 7Banisi S, Finch J A. Testing a flotation column at the sarcheshmeh copper mine[J]. Minerals Engineering, 2001, 14(7): 785-789.
  • 8Gunry A, onal G, Celik M S. A new flowsheet for processing chromite fines by column flotation and the collector adsorption mechanism[J]. Minerals Engineering, 1999, 12(9): 1041-1049.
  • 9Valderrama L, Rubio J. Unconventional column flotation of low-grade gold fine particles from tailings[J]. Int J Miner Process, 2008, 86(1/4): 75-84.
  • 10Tao D, Luttrell G H, Yoon R H. A parametric study of froth stability and its effect on column flotation of fine particles[J]. Int J Miner Process, 2000, 59(1): 25-43.

二级参考文献70

共引文献41

同被引文献281

引证文献21

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部