期刊文献+

前驱体掺杂-常温球磨还原制备Ti^(4+)掺杂LiFePO_4 被引量:9

Preparation of Ti^(4+)-doped LiFePO_4 by precursor-doping and room temperature reduction via ball-milling
下载PDF
导出
摘要 采用共沉淀法制备了掺Ti4+前驱体FePO4·2H2O,并以乙二酸为还原剂,与Li2CO3反应在常温下球磨合成LiFePO4前驱混合物,后经热处理得橄榄石型LiFePO4。用SEM,XRD,EIS和恒流充放电等对样品进行表征。研究结果表明,3%(摩尔分数)Ti4+掺杂的LiFePO4拥有最优的电化学性能,该样品在0.1C,1C和2C倍率下的初始放电比容量分别为150,130和125mA·h/g,在1C倍率下循环100次后的放电比容量高达133mA·h/g。 Ti^4+-doped precursors (FePO4·2H2O) were prepared via co-precipitation method. LiFePO4 precursor-mixtures were obtained by ball-milling at room temperature, using FePO4·2H2O, Li2CO3 and oxalic acid as raw materials, and then olivine-type LiFePO4 were synthesized by the following heat treatment. The samples were characterized using scanning electron microscope, X-ray diffraction, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. The results show that the sample doped with 3% Ti^4+ (molar fraction) has the most impressive electrochemical performance as follows: its initial discharge capacities are 150, 130 and 125 mA·h/g at 0.1C, 1C and 2C rates, respectively, without capacity fading even after 100 cycles at 1C rate.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期288-293,共6页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2007CB613607)
关键词 LIFEPO4 前驱体 Ti4+掺杂 球磨 常温还原 LiFePO4 precursor Tia^+-doping ball-milling room temperature reduction
  • 相关文献

参考文献4

二级参考文献50

  • 1杨威,曹传堂,曹传宝.共沉淀法制备锂离子电池正极材料LiFePO_4及其性能研究[J].材料工程,2005,33(6):36-40. 被引量:20
  • 2Andersson A S,Kalska B,Haggstrom L,et al.Lithium extraction/insertion in LiFePO4:an X-ray diffraction and mossbauer spectroscopy study[J].Solid State Ionics,2000,130:41-52.
  • 3Macneil D D,LU Zhong-hua,CHEN Zhao-hui,et al.A comparison of electrode/electrolyte reaction at elevated temperature for various Li-ion battery cathodes[J].J Power Sour,2002,108(1-2):8-14.
  • 4Takahashi M,Tobishima S I,Takei K,et al.Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J].Solid State Ionics,2002,148:283-289.
  • 5Prosini P P,List M,Scaccia S,et al.Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries[J].J Electrochem Soc,2002,149:A297-A301.
  • 6Bauer M E,Bellitto C,Pasoualli M,et al.Versatile synthesis of carbon-rich LiFePO4 enhancing its electrochemical properties[J].Electrochem and Solid State Lett,2004,7:A85-A87.
  • 7Andersson A S,Thomas J O.The source of first-cycle capacity loss in LiFePO4[J].J Power Sources,2001,97/98:498-502.
  • 8Yang S,Zavalij P Y,Whittngham M S.Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electrochemistry Communications,2001,3:505-508.
  • 9Huang H,Cyin S,Nazar L F.Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J].Electrochem and Solid State Lett,2001,4:A170-A172.
  • 10Hu Q,Doeff M M,Kostecki R,et al.Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J].J Electrochem Soc,2004,151:A1279-A1285.

共引文献25

同被引文献172

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部