期刊文献+

合金元素Ti对Mo合金性能及组织结构的影响 被引量:8

Effect of alloyed element Ti on property and microstructure of Mo alloy
下载PDF
导出
摘要 采用粉末冶金方法制备Ti含量为0.3%~1.0%的Mo-Ti合金。通过力学性能实验、光学显微镜观测和SEM分析,对Mo-Ti合金的性能和组织结构进行研究分析。结果表明,在Mo粉中添加TiH2所制备的合金比纯钼金属具有更好的拉伸性能,并且当Ti含量为0.8%时合金的力学性能最好;合金元素Ti除部分固溶到钼基体外,还在晶粒之间和晶粒内部生成(Mo,Ti)xOy弥散相,这些(Mo,Ti)xOy弥散相的生成,一方面净化了晶界氧,使晶粒之间的孔隙减少,同时也阻止晶粒在烧结时的晶粒长大,有利于合金性能的提高;但Ti添加量过多时,会使晶界之间产生过量的(Mo,Ti)xOy质点,使晶粒之间的结合能力减弱,对合金性能产生不利影响。 Mo-Ti alloy with 0.3%-1.0%Ti was fabricated by powder metallurgy process. The property and microstructure of Mo-Ti alloy were studied and analyzed through mechanical property test, optical microscope observation and SEM analysis. The result indicates that the property of the alloy by adding TiH2 powder is better than pure Mo. The alloy has the best mechanical property when the additional amount of Ti is 0.8%. The portion of alloyed element Ti solves in the Mo matrix while the others form (Mo, Ti)xOy distributed phase. This kind of dispersion phase absorbs the oxygen in the grain boundary, decreases the number of pores between grains as well as prohibits the growth of the grain that altogether plays a positive role in the enhance of the alloy property. However, over-dose (Mo,Ti)xOy particles could weaken the binding ability of the grains, which would generate negative influence on the property of the alloy.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期395-399,共5页 Journal of Central South University:Science and Technology
基金 教育部新世纪人才计划基金资助项目(NCET-05-0693) 国家军工配套项目(JPPT-115-2-662)
关键词 Mo-Ti合金 拉伸强度 第二相粒子 Mo-Ti alloy tensile strength second phase particles
  • 相关文献

参考文献14

  • 1张久兴,刘燕琴,刘丹敏,周美玲,左铁镛.微量La_2O_3对钼的韧化作用[J].中国有色金属学报,2004,14(1):13-17. 被引量:34
  • 2Zheng J H, Bogaerts W F, Vancoillie I, et al. Initial corrosion evaluation of molybdenum based alloys for the NET divertor design[J]. Fusion Engineering and Design, 1991, 18:179-183.
  • 3Sharma I G, Chakraborty S P, Suri A K. Preparation of TZM alloy by aluminothermic smelting and its characterization[J]. Journal of Alloys and Compounds, 2005, 393: 122-128.
  • 4Mrotzek T, Hoffmann A, Martin U. Hardening mechanisms and recrystallization behaviour of several molybdenum alloys[J].International Journal of Refractory Metals & Hard Materials, 2006, 24: 298-305.
  • 5Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.5pct titanium-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum fiat products[J]. Materials Science and Engineering, 2006, 418: 120-136.
  • 6Hiroaki K, Yuji K, Tamaki S, et al. Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation[J]. Journal of Nuclear Materials, 1996, 223/227: 557-564.
  • 7Cockeram B V. Measuring the fracture toughness of molybdenum-0.5 pet titanium-0.1 pet zirconium and oxide dispersion-strengthened molybdenum alloys using standard and subsized bend specimens[J]. Metallurgical and Materials Transactions A, 2002, 33A: 3685-3707.
  • 8Scibetta M, Chaouadi R, Puzzolante J L. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re[J]. Journal of Nuclear Materials, 2000, 283/287: 455-460.
  • 9Fumio M, Kensuke S. Mechanical properties and neutron-irradiation effects in the welds of molybdenum and its alloys[J]. Journal of Nuclear Materials, 1991, 179/181: 592-595.
  • 10Takeshi I, Yutaka H, Masahiro N, et al. Effects of Ti addition on carbon diffusion in molybdenum[J]. Journal of Alloys and Compounds, 2006, 414: 82-87.

二级参考文献2

共引文献33

同被引文献92

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部