期刊文献+

三轴刚性地球自由旋转欧拉角变化数值模拟研究 被引量:1

Numerical Simulation on the Free Rotation of The Earth as a Triaxial Rigid Body
下载PDF
导出
摘要 假定地球是一个三轴刚性体,在Euclid空间中做自由旋转。在设定主惯性矩A小于B小于C的情况下,求解欧拉运动方程,得到数值解。计算结果表明:地球在除了自转和自由进动之外,同时还存在着自由章动。章动角会随着时间做周期性变化。重点讨论的是章动角的变化。 The Earth is taken as a triaxial rigid body,which rotates freely in the Euclidian space. The starting equations are the Euler dynamic equations, with A smaller than B and B smaller than C. The Euler equations are solved, and the numerical results are provided. Calculations show that,besides the selfrotation of the Earth and the free Euler procession of the Earth's rotation,there exists the free nutation:the nutation angle, the angle between the Earth's momentary rotation axis and the mean axis, changes with time, but periodically. The free nutation is especially investigated.
作者 陈光华
出处 《测绘与空间地理信息》 2009年第2期59-62,共4页 Geomatics & Spatial Information Technology
基金 2006~2007年武汉大学大学生科研项目
关键词 三轴刚性地球 章动角的变化 主惯性矩 triaxial rigid Earth variation of Eulerian angles principal moment of inertia
  • 相关文献

参考文献2

二级参考文献24

  • 1魏子卿.地球主惯性矩[J].测绘学报,2005,34(1):7-13. 被引量:10
  • 2申文斌,梁毅强.内核对地球主转动惯量A与B的差异的贡献[J].大地测量与地球动力学,2006,26(2):39-42. 被引量:2
  • 3HEISKANEN W A, MORITZ H P. Geodesy[M].San Francisco, California and London, UK: W H Freeman and Company, 1967.
  • 4MORITZ H, MUELLER I I. Earth Rotation/Theory and Observation[M]. Ungar/New York: The Ungar Publishing Company, 1987.
  • 5MARCHENKO A N, ABRIKOSOV O A. Evolution of the Earth's Principal Axes and Moments of Inertia:the Canonical Form of Solution [J]. Journal of Geodesy, 2001, 74:655-669.
  • 6LEMOINE F G, KENYON S C,et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96[R]. Maryland: Goddard Space Flight Center, 1998.
  • 7Preliminary Solution for Some Mechanical and Geometrical Parameters of the Earth [ EB/OL]. http://people. polyet. lviv. ua/sc5/sc5/results/constants/constants. htm.
  • 8GROTEN E. Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics[J]. Journal of Geodesy, 2000,74,134-140.
  • 9NIMA. World Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems[ R].National Imagery and Mapping Agency Technical Report, NIMA TR8350.2, Third Edition Amendment 1, 3 January 2000.
  • 10CODATA Value: Newtonian constant of gravitation,The NIST Reference on Constants, Units, and Uncertainty[ EB/OL]. http://physics.nist.gov/.

共引文献9

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部