期刊文献+

余辛流形及其不变子流形

Invariant Submanifold of A Cosymplectic Manifold
下载PDF
导出
摘要 介绍了一类重要的流形——余辛流形,给出了关于余辛流形曲率的一些关系式,并研究了余辛流形的不变子流形,得到了一些有趣的性质:余辛流形的不变子流形仍然是余辛流形,并且是最小子流形. A class important manifold-cosymplectic manifold is introduced, and the invariant submanifold of cosymplectic manifold is studied to obtain some interesting properties of the invariant submanifolds. The invariant submanifold of the cosymplectic manifold is still a cosymplectic manifold and a minimal submanifold.
作者 王爱齐
出处 《大连交通大学学报》 CAS 2009年第2期96-98,共3页 Journal of Dalian Jiaotong University
关键词 余辛流形 不变子流形 极小子流形 cosymplictic manifold invariant submanifold minimal submanifold
  • 相关文献

参考文献6

  • 1BLAIR D E. Contact manifolds in Riemannian geometry, Lecture Notes in Mathenatics 509 [ R ]. Berlin : Springer Verlag, 1976.
  • 2LUDDEN G D. Submanifolds of cosymplectic [ J ]. J. Diff. Geom. ,1970,(4) :237-244.
  • 3KIM J S, CHOI J. A basis inequality for submanifolds in a cosymplectic space form[J]. Int. J. Math. and Math. Sci. , 2003, (9) : 539-547.
  • 4IANUS S, MIHAI I. Semi-invariant submanifolds of an almost paracontact manifold [ J ]. Tensor N. S, 1982,39 : 195-200.
  • 5CABREEIZP J L, CARRIAZO A, FERNANDEZL M, et al. Semi-slant submanifolds of Sasakian manifolds [ J ]. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat, 1994, 40( 1 ) : 55-61.
  • 6LIU XIMIN. On Ricci curvature of C-totally real submanifolds in Sasakian space forms [ J ]. Proc. Indian Acad. Sci( Math. Sci) , 2001,111 (4) :339-405.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部