期刊文献+

基于LS-SVM模型的无级变速器夹紧力控制系统故障诊断 被引量:4

Fault Diagnosis of CVT Clamping Force Control System Based on Least Squares Support Vector Machine Model
下载PDF
导出
摘要 在不增加硬件成本和过大的运算量的前提下,研究了基于模型的无级变速器夹紧力控制系统故障诊断方法。提出了根据测得的信号以及全局和部分元件诊断模型的输出结果来完成故障隔离与定位的诊断策略;针对系统的非线性特征,采用最小二乘支持向量机建立反映其输入输出关系的非线性预测模型。测试结果表明所建立的故障自诊断系统具有较高的精度和反应速度,可以粗略地实现故障的隔离和定位。 On the premise of without additional hardware cost and excessive computing effort, a modelbased fault diagnosis method for the clamping force control system in continuously variable transmission (CVT) is studied. A diagnosis strategy is proposed, which accomplishes fault isolation and location based on the measured signal and the outputs of the diagnosis models for both global system and some components. In view of the nonlinear feature of the system, least squares support vector machine (LS-SVM) is used to establish the nonlinear predictive models, reflecting the input/output relationship. The test results indicate that the proposed on-board diagnosis system has high accuracy and response speed, and can roughly realize the fault isolation and location of CVT clamping force control system.
出处 《汽车工程》 EI CSCD 北大核心 2009年第4期317-320,325,共5页 Automotive Engineering
基金 国家863计划项目(2006AA110105) 山东省泰山学者计划资助
关键词 无级变速器 夹紧力控制系统 故障诊断 最小二乘支持向量机 CVT clamping force control system fault diagnosis LS-SVM
  • 相关文献

参考文献6

二级参考文献19

  • 1杨阳,秦大同,杨亚联,胡建军,吴光登.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程,2006,17(4):426-431. 被引量:12
  • 2Mechlem J D,Longmore D K,Burrows C R.Belt Torque Loss in a Steel V-Belt Continuously Variable Transmission.Proc.Instn.Mech.Engrs.,Part D,1994,208(D2):91~97
  • 3Michlem J D,Longmore D K,Burrows C R.The Megntitude of the Loss in the Steel Pushing V-Belt Continuously Variable Transmission.Proc.Instn.Mech.Engrs,Part D,1996,210 (D2):57~62
  • 4FARBER L A. Nonlinear signal processing using neural network.. Prediction and system modeling [R].Technical Report LA-UR-87-2662, I.os Alamos National Laboratory. Los Alamos. NM, 1987.
  • 5WEIGEND A B. Predicting the future: a connectionist approach [J]. International Journal of Neural System,1990(1) : 193-209.
  • 6VAPNIK V. The nature of statistical learning [M].New York: Springer, 1995.
  • 7TAY F E H , Cao L J. Application of support vector machines in financial time series forecasting [J]. Omega, 2001, 29: 309-317.
  • 8尉询凯 李应红 王硕 等.基于支持向量机的航空发动机滑油监控分析[J].航空动力学报,2003,18(6):393-397.
  • 9FORD J. Chaos at randorn[J]. Natrue, 1983, 305(20) : 17-24.
  • 10TAKENS F. Detecting strange attractors in turbulence[C]. In: Rand, D. A., Young, L. S. Dynamical Systems and Turbulence, Berlin : Springer-Verlag, 1981.

共引文献231

同被引文献33

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部