期刊文献+

基于BP神经网络的复合材料失效分析

Failure Analysis of Composites Based on Back Propagation Neutral Network
下载PDF
导出
摘要 创建了基于BP神经网络方法预测复合材料在复杂应力状态下的失效模型。依据现有的试验数据,建立了基于BP神经网络的数学模型,并给出了网络在多次训练的统计性评价参数,以及单次样本泛化性能的评价参数,并利用这些参数实现了网络的结构优化和训练优化,得到了比较精确的网络模型,成功预测了复合材料的失效数据,拓宽了计算复合材料失效的范围,同时可以对复合材料的失效分析和试验设计进行指导。 The model based on back propagation neutral network (BP) is constructed which is used to predict the failure of composites under combined load. Depending on existing experimental data, mathematical model is built, and the estimation parameters for both statistical and single data sample are introduced to evaluate the performance of BP neural network, at the same time, we utilize those parameters to complete structural optimization and training optimization, which promote the accuracy of the network. The experience of BP neural network gives a new approach to predict the failure of the composites, and guides the designer for better understanding the materials and makes them more confidence to use composites while designing new products.
出处 《航空计算技术》 2009年第2期29-32,共4页 Aeronautical Computing Technique
关键词 复合材料 BP神经网络 失效分析 结构优化 训练优化 composites BP neural network failure analysis structural optimization training optimization
  • 相关文献

参考文献7

  • 1Z Zhang, K Friedrich. Artificial neural networks applied to polymer composites : a review [ J ]. Composites Science and Technology, 2003,63 : 2029 - 2044.
  • 2Zhenyu Jiang, Zhong Zhang, Klaus Friedrich. Prediction on wear properties of polymer composites with artificial neural networks [ J ]. Composites Science and Technology,2007,67 : 168 - 176.
  • 3C S Lee,W Hwang,H C Park,et al. Failure of carbon/epoxy composite tubes under combined axial and torsional loading: 1. Experimental results and prediction of biaxial strength by the use of neural networks [ J ]. Composites Science and Technology, 1999,59 : 1779 - 1788.
  • 4P D Soden, M J Hinton,A S Kaddour. Lamina properties,layup configurations and loading conditions for a range of fiber-reinforced composite laminates [ J ]. Composites Science and Technology, 1998,58 : 1011 - 1022.
  • 5P D Soden,M J Hinton,A S Kaddour. Biaxial test results for strength and deformation of a range of Eglass and carbon fiber reinforced composite laminates: failure exercise benchmark data [ J ]. Composites Science and Technology, 2002, 62:1489 - 1514.
  • 6段志勇,张彤,徐浩军,胡良谋.基于BP神经网络的飞机完好率建模研究[J].航空计算技术,2007,37(3):37-40. 被引量:6
  • 7黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述[J].力学进展,2007,37(1):80-98. 被引量:38

二级参考文献37

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1991.34-36.
  • 2刘晓东.装备综合保障模型及建模方法研究[D].西安:空军工程大学,2001.38.
  • 3靳蕃.神经网络智能计算基础、原理、方法[M].西南交通大学出版社,2000.
  • 4Hinton M J, Soden P D. Predicting failure in composite laminates: the background to the exercise. Comp Sci & Tech,1998,58(7): 1001-1010.
  • 5Jenkins C F. Report on materials of construction used in aircraft and aircraft engines. Great Britain Aeronautical Research Committee, 1920.
  • 6Rowlands R E. Strength (Failure) theories and their experimental correlation. In: Sih G C, Skudra A M, eds. Failure Mechanics of Composites. North-Holland, Amsterdam: Elsevier Science Pub Co, 1985. 71-125.
  • 7Nahas M N. Survey of failure and post-failure theories of laminated fiber-reinforced composites. J Gomp Tech & Res,1986, 8(4): 138-153.
  • 8Labossiere P, Neal K W. Macroscopic failure criteria for fiber-reinforced composite materials. Solid Mech Arch,1987, 12:439-450.
  • 9Echaabi J, Trochu F, Gauvin R. Review of Failure Criteria of Fibrous Composite Materials. Polymer Composites,1996, 17(6): 786-798.
  • 10Sutherland L S, Soares C G. Review of probabilistic models of the strength of composite materials. Reliability Engineering & System Safety, 1997, 56:183-196.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部