期刊文献+

人工智能技术在层冷温度控制的设计应用

The Artificial Intelligence Technony Design and Application in the Temperature of CTC
下载PDF
导出
摘要 热轧卷取温度控制的数学模型研究的已经比较成熟,而对整个热轧卷取温度控制系统的综合开发与应用却不够。本文给出卷取温度控制系统的结构,提出采用动态修正预设定模型、头部自学习修正模型参数、全长监控来改善控制质量的控制思想并给出相应控制算法,将其应用于莱钢1500mm带钢热连轧机组,实践证明该控制系统运行稳定,控制精度高,很好地满足用户的要求。 The mathematic model of coiling temperature control (CTC) in hot strip rolling were well researched, while the development and application of the whole system is poor. This paper provides the structure of the CTC control system; brings forward that to correct the presetting model dynamically, to modify model parameters by strip head self learning and to improve the quality by whole-long feedback control and also gives the arithmetic of control. It has been proved by practice that the whole system was steady and the control precision was good. It is satisfaction for the users.
出处 《可编程控制器与工厂自动化(PLC FA)》 2009年第4期120-122,共3页 Programmable controller & Factory Automation(PLC & FA)
关键词 DCS 卷取温度 动态修正 DCS Coiling temperature Moving development
  • 相关文献

参考文献2

二级参考文献9

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部