期刊文献+

焊接工艺对GMAW堆焊焊缝区温度场影响的数值模拟

Numerical Simulation of the Effects of Welding Processes on Temperature Field of GMAW Surfacing Weld Zone
原文传递
导出
摘要 为了探索焊接工艺对熔化极气体保护堆焊快速成形零件组织性能的影响,根据材料热物理性能参数以及相变潜热与温度的非线性关系,建立了熔化极气体保护堆焊成形过程的数学模型和有限元模型,利用ANSYS软件的APDL语言编写程序,实现了高斯移动热源载荷下的熔化极气体保护堆焊成形温度场计算,分析对比了不同焊接工艺对焊缝区温度场热循环的影响。结果表明:在其他因素一定的条件下,热输入和焊接速度对焊缝区热循环影响显著,而基板厚度对其影响较小;选择厚度约为16mm的基板,采用小于120×20J的热输入和大于10mm/s的焊接速度有望成形出性能优良的零件。 In order to study the effects of welding processes on the structure and property of parts made by Gas Metal Arc Welding (GMAW) surfacing Rapid Forming (RF) technology, based on the nonlinear relations between the thermophysical performance parameters and phase change latent heat with temperature, the mathematical model and finite element model of GMAW surfacing formation are established. Based on ANSYS APDL developing platform, the temperature field of surfacing deposition formation loaded by Gauss thermal resource is calculated by ANSYS. The effects of welding process on temperature field are atso analyzed. The results indicate that heat input and welding speed greatly influence the thermal cycles of weld zone, while the thickness of plate does little under other welding process parameters defined. On low carbon steel within 16 mm thickness, the excellent RF parts will be obtained by adopting heat input of less than 120 ×20 J and high welding speed of more than 10 mm/s.
出处 《装甲兵工程学院学报》 2009年第2期84-87,共4页 Journal of Academy of Armored Force Engineering
基金 国家自然科学基金资助项目(50235030)
关键词 熔化极气体保护焊 快速成形 温度场 工艺参数 GMAW rapid formation temperature field technical parameter
  • 相关文献

参考文献7

二级参考文献31

  • 1王强,李冬林.基于ANSYS平台的堆焊热应力的动态模拟[J].武汉理工大学学报(交通科学与工程版),2004,28(6):866-869. 被引量:10
  • 2陈玉华,王勇,董立先,韩彬.高压油气管线的在役焊接修复技术进展[J].压力容器,2005,22(2):36-40. 被引量:22
  • 3陈家权,沈炜良,尹志新,肖顺湖.基于单元生死的焊接温度场模拟计算[J].热加工工艺,2005,34(7):64-65. 被引量:44
  • 4苏德达,李家俊.H08Mn2SiA热处理双相钢丝的拉伸变形与断裂特性[J].金属制品,1995,21(2):4-8. 被引量:3
  • 5Carmignani C, Mares R, Toselli G. Transient finite element analysis of deep penetration laser welding process in a singlepass butt-welded thick steel plate. Computer Methods in Applied Mechanics and Engineering, 1999, 179(3): 197-214.
  • 6Hill M R, Nelson D V. Determining residual stress through the thickness of a welded plate. American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication) PVP, 1996, 327:29-36.
  • 7John G. A new finite model for welding heat source. Metallurgual Transactions, 1984, 15B(2):299-305.
  • 8Janez D S. Mathematical modeling of melting rate in twin wire welding. Journal of Materials Processing technology,2000, 100:250-256.
  • 9Tsai C L, Feng Z L.A computational analysis of thermal and mechanical conditions for weld metal solidification cracking [J ]. Welding Research Abroad, 1996, 42(1): 34-41.
  • 10Karlsson R Ⅰ. Three-dimensional finite element analysis of temperature and stresses in a single-pass butt-welded pipe [J]. Journal of Pressure Vessel Technology, 1990, 112(2):76-84.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部