期刊文献+

基于神经网络的数字识别 被引量:1

The Numerical Recognition Based on Neural Network
下载PDF
导出
摘要 人工神经网络是信息科学、脑科学、神经心理学等诸多学科近年来共同关注的研究热点。由于神经网络具有良好的抽象分类特性,使其成为解决图像识别相关问题的有效工具。在简述图像识别过程的基础上,重点讨论利用BP神经网络对图像进行识别,用MATLAB完成对神经网络的训练和测试,获得比较满意的结果。 Artifical neural network is the hot researching subject that is concemed commonly by a number of scientific areas such as information science, brain science and neuropsychology etc. over the recent years. Because of the excellent characteristic of neural network in abstract classification, it becomes the effective tool in solving the relevant problems in image recognition. During introducing the process of the image recognition,discussion is mainly focused on recognizing the image by using BP neural network and on accomplishing exercise and test by MATLAB. The result is comparatively satisfactory.
出处 《机械制造与自动化》 2009年第2期78-80,共3页 Machine Building & Automation
关键词 反向传播网络 数字识别 图像处理 BP network numerical recognition image processing
  • 相关文献

参考文献5

二级参考文献13

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(一)[J].数据采集与处理,1993,8(3):193-201. 被引量:145
  • 2吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 3[1]Panagiotis Mitropulos, Christos Koulamas, Radovan Stojanovic, et al. Real-Time Vision System for Defect Detection and Neural Classification of Web Textile Fabric[J]. SPIE, 1999, 3652.
  • 4[2]J Tchan, A Manning and R.C. Thompson The Development of anAutomated System for the Analysis of Print Quality Variables[J]. SPIE, 1998,3409.
  • 5[3]P. Geveaux, S. Kohler, J. Miteran, et al. Comparison Between Two Classification Methods, Application to Defects Detection by Artificial Vision in Industrial Field Proceedings[J]. SPIE, 2000, 3966.
  • 6[4]KENNETH R. CASTLEMAN Digital Image Processing[M]. PRENTICE HALL, 1998.
  • 7Gao X Q,IEEE Trans Image Processing,2000年,9卷,3期,501页
  • 8罗西平,模式识别与人工智能,1999年,9卷,3期,300页
  • 9Li W,IEEE Trans Image Processing,1995年,4卷,1期,105页
  • 10Chu C C,IEEE PAMI,1993年,15卷,12期,1241页

共引文献54

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部