期刊文献+

具Holling Ⅱ类功能反应函数的食饵-捕食系统的定性分析 被引量:1

Qualitative Analysis of Two Species Predator-prey Systems with Holling’s Type Ⅱ Functional Response
下载PDF
导出
摘要 研究具有非线性密度制约的Holling II型功能反应的食饵-捕食两种群模型,讨论了该系统的非负平衡点性态和其对应的反映扩散系统正平衡点的稳定性,最后证明了系统在平衡点外围至少存在一个稳定极限环. This paper studied two types of group models of species predator-prey of Holling's type Ⅱ functional response with nonlinear density dependent. The quality of the nonnegative equilibrium point for this system and the stability of positive equilibrium point for its reaction-diffusion system were analyzed. At the end of this paper, we can easily draw a conclusion that at least one limit cycle for the ODE system does exist.
出处 《温州大学学报(自然科学版)》 2009年第2期6-10,共5页 Journal of Wenzhou University(Natural Science Edition)
基金 兰州交通大学青蓝人才工程基金资助项目(QL-05-18A)
关键词 非线性密度制约 平衡点 反应扩散 极限环 HOLLING II型 Nonlinear density dependence Equilibrium Reaction-diffusion Limit cycle Holling's type Ⅱ
  • 相关文献

参考文献3

二级参考文献16

  • 1肖海滨.双密度制约的Holling Ⅱ型捕食动力系统的定性分析[J].生物数学学报,2006,21(3):334-340. 被引量:12
  • 2SONG Xin-yu,CHEN Lan-sun.Optimal haresting and stability for a two-species competitive system with stage structure[J].Math Boisci,2001,170:173-186.
  • 3LIU Sheng-qiang,CHEN Lan-sun,LUO Gui-lie.Extinction and permanence in competitive stage structured system with time-delays[J].Nonlinear Anal,2002,51:1347-1361.
  • 4XU Rui,CHAPLAIN M A J,DAVIDSON F A.Modelling and analysis of a competitive model with stage structure[J].Mathematical and Computer Modeling,2005,41:159-175.
  • 5AIELLO W G,FREEDMAN H I.A time-delay model of single-species growth with stage structure[J].Math Boisci,1990,101:139-153.
  • 6AIELLO W G,FREEDMAN H I,WU Jian-hong.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM J Appl Math,1992,52:855-869.
  • 7ZHANG Xin-an,CHEN Lan-sun,NEAMANN A U.The stage-structured predator-prey model and optimal harvesting polite[J].Math Boisci,2000,168:201-210.
  • 8LIN Zhi-gui.Time delayed parabolic system in a two-species competitive model with stage structure[J].J Math Anal Appl,2006,315:1347-1361.
  • 9PAO C V.Nonlinear Parabolic and Elliptic Equations[M].New York:Prenum,1992.
  • 10PANG P,WANG Ming-xin.Strategy and stationary pattern in a three-species predator-prey model[J].J Diff Eqs,2004,200:245-273.

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部