期刊文献+

复杂光照下的两步法颜色恒常性增强 被引量:4

Color constancy enhancement in two steps under variable illumination
下载PDF
导出
摘要 根据视觉信息处理的分模块性原理,研究了复杂光照下的颜色恒常性,给出了一种两步法颜色恒常彩色图像增强算法。利用边缘附近像素估计原图像的偏色信息,采用白平衡的方法对偏色图像进行偏色纠正。然后,根据RGB颜色空间三分量的颜色相关性特点,获取亮度增益曲面并对彩色图像的RGB三分量进行同比增强得到最终的彩色图像。在SFU数据库进行了实验,结果表明该算法的对比度是原图的4倍以上,且亮度改变适中。该算法克服了传统颜色恒常性的不适定问题,对于存在偏色、低照度等复杂光照下的图像均能较好地保持颜色的恒常性,同时能有效提升图像的对比度和亮度。 According to the module principle of visual information processing, the color constancy under variable illumination is studied and a novel color constancy image enhancement algorithm in two steps under variable illumination is presented. After estimating the color offset of an original image using the pixel near edges, the color offset is corrected with white balance. Then, based on the correlation characteristics of three components in RGB color spaces, the RGB three components of the color image are enhanced at the same proportion by brightness gain curved surface to ensure the hue to be a constance. The experiment on the SFU database indicates that the contrast of the processed image is four times as high as that of the original image, and the brightness change is suitable. The algorithm overcomes the ill-posed problem of traditional color constancy algorithm and can better maintain the color constancy for the images under variable illumination with color offsets or lower illuminating, and can enhance effectively the contrast and brightness.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2009年第4期859-866,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60572078) 湖南省教育厅科学研究基金资助项目(No.07C319)
关键词 颜色恒常性 两步增强 偏色纠正 亮度增益 color constancy enhancement in two steps color correction brightness gain
  • 相关文献

参考文献16

  • 1FORSYTH D A. A novel algorithm for colour constancy [J].Computer Vision, 1990,5(1) :5-36.
  • 2FINLAYSON G, HORDLEY S. Improving gamut mapping color constancy [J].IEEE Transactions on Image Processing, 2000,9 (10) : 1774-1783.
  • 3FINLAYSON G, HORDLEY S, HUBEL P M.Color by correlation: a simple, unifying framework for color constancy [J]. IEEE Trans. on Pattern Analysis And Machine Intelligence, 2001,23 ( 11 ) : 1209-1221.
  • 4蔡珣,孟祥旭,向辉.光照色调颜色恒常性算法研究[J].中国图象图形学报(A辑),2004,9(8):922-926. 被引量:6
  • 5王彦臣,李树杰,黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学精密工程,2006,14(1):70-76. 被引量:47
  • 6LAND E. The retinex[J]. American Scientist, 1964,52(1) :247-264.
  • 7RAHMAN Z U, JOBSON D J, WOODELL C A. Multiscale retinex for color image enhancement [C]. IEEE Proceedings of the 1996 International Conference on Image Processing, 1996 (3) : 1003- 1006.
  • 8RAHMAN Z U,JOBSON D J,WOODELL G A. Retinex processing for automatic image enhancement [J]. Journal of Electronic Imaging, 2004, 13(1) :100-110.
  • 9ZEKI S. A Vision of the Brain [M]. London.. Blackwell Scientific Publicationss, 1993.
  • 10MULLEN K T. Contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings [J]. J Physiol (London), 1985,359:381- 400.

二级参考文献30

  • 1张雷,杨润魁,黄廉卿.数字X光医学影像压缩技术[J].光学精密工程,2004,12(6):632-637. 被引量:4
  • 2[1]MICHA F,NIR S.Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images[J].Magnetic Resonance Imaging,1999,17(2):257-266.
  • 3[3]GUANG D,JEAN C P.Differentiation-based edge detection using the logarithmic image processing model[J].Journal of Mathematical Imaging and Vision,1998,8(2):161-180.
  • 4[4]TAKASHI S,TOSHIKAZU K.Edge detection method insensitive to the light and shade variance in image[C].Systems,Man,and Cybernetics,IEEE International Confefence,2000,3:1048-1053.
  • 5[5]LEE G D,KIM K S,JEONG D S.Rough edge detection of low contrast images using consequential local variance maxima[c].TENCON 99,Proceedings of the IEEE Region 10 Conference,1999,1:734-737.
  • 6[6]PEREZ M,PAGLIARI C,DENNIS T.A zero-crossing edge detector with improved localization and robustness to image brightness and contrast manipulations[J].Pattern Recognition,2002,23(14):1771-1784.
  • 7[7]LEE W B,KIM D,KWEON I.Automatic edge detection method for the mobile robot application[C].Proceedings of the 2003 IEEWRSJ Intl.Conference on Intelligent Robots and Systems Las Vegas,Nevada,2003:2730-2735.
  • 8[9]CLAUDIO R J,JACOB S.Adaptive image de-noising and edge enhancement in scale-space using the wavelet transform[J].Pattern Recognition Letters,2003,24(7):965-971.
  • 9[11]PEDRYCA W.Fuzzy sets in pattern recognition:methodology and methods[J].Pattern Recognition,1990,23(1):121-146.
  • 10[13]ZHOU D L,PAN Q.An improved algorithm of edge detection based on fuzzy sets[J].Journal of Image and Graphics,2001,6(4):353-358.

共引文献65

同被引文献45

  • 1张向飞,张刚,程永强.基于FPGA的高分辨率贝尔CFA插值算法的设计与实现[J].太原理工大学学报,2006,37(S1):12-15. 被引量:2
  • 2赵全友,潘保昌.改进的LoG边缘自动白平衡算法[J].计算机应用研究,2009,26(2):775-777. 被引量:13
  • 3周荣政,何捷,洪志良.自适应的数码相机自动白平衡算法[J].计算机辅助设计与图形学学报,2005,17(3):529-533. 被引量:37
  • 4彭俊,高伟.基于FPGA的Bayer图像彩色恢复快速算法研究及实现[J].科学技术与工程,2007,7(13):3084-3086. 被引量:4
  • 5汤顺清.色度学[M].北京:北京理工大学出版社,1991:25-144.
  • 6WILLIAM J C, XIN O, FORAN D J. Moving beyond color: the case for multispectral imaging for brightfield pathology[C]. Proc. of IEEE Interna- tional Symposium on Biomedical Imaging, ISBI' 09, 2009:1111-1114.
  • 7WU Q, ZENG L, ZHENG H, et al.. Precise segmentation of white blood cells by using multi spectral imaging analysis techniques[C]. Proc. of Intelligent Networks and Intelligent Systems, Wuhan: ICINIS'08, 2008:491-494.
  • 8WU C Y, LEE S M, WEN C H, et al.. Multispectral image acquisition system for color spectrum reproduction[C]. Proc. of CVGIP, 2003 : 115 - 122.
  • 9BAKKE M A, FARUP I, HARDEBERG Y J. Multispeetral gamut mapping and visualization-a first attempt[J]. SPIE, 2005,5667:193-200.
  • 10DERKHA W M , ROSEN R M. Spectral colorimetry using LabPQR: An interim connection space [J]. Journalof IS&T, 2006,50(1) :53-63.

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部