期刊文献+

基于一个新混沌系统的超混沌的产生及其控制 被引量:2

Generating hyperchaos from a new chaotic system and its control
下载PDF
导出
摘要 通过在Yassen提出的三阶混沌系统中增加一个状态,从而得到一个新的超混沌系统.研究了新的超混沌系统的基本动力学行为,给出了超混沌系统的吸引子、Lyapunov指数、分维数、分岔图、平衡点以及随着参数的变化新系统的运动轨道在混沌和超混沌之间的演变过程.分别利用非线性双曲函数反馈控制法和线性反馈控制法研究了新系统的超混沌控制问题,讨论了将受控系统的超混沌轨道镇定到不稳定平衡点时的条件.数值模拟进一步验证了所提出方案的有效性. In this paper, a new hyperchaotic system is presented by introducing an additional state into the third-order chaotic system proposed by Yassen. Some of its basic dynamical properties, such as hyperchaotic attractor, Lyapunov exponent, fractal dimension, plot of bifurcation, equilibrium point and hyperchaotie attractor evolving into chaotic dynamical behaviors with parameter varying are investigated. Various attractors are illustrated by computer simulation. Two different methods, i.e. nonlinear hyperbolic function feedback control and linear feedback control methods are used to control the hyperchaos in the new hyperchaotic system. The conditions suppressing hyperchaos to unstable equilibrium point are discussed. Numerical results show the effectiveness of the control methods.
出处 《系统工程学报》 CSCD 北大核心 2009年第2期136-142,共7页 Journal of Systems Engineering
基金 国家"863"高科技计划资助项目(2007AA01Z478) 河南省教育厅自然科学研究指导计划资助项目(2008B520003)
关键词 超混沌系统 分岔 非线性双曲函数反馈控制 线性反馈控制 平衡点 hyperchaotic system bifurcation nonlinear hyperbolic function feedback control linear feedback control equilibrium point
  • 相关文献

参考文献12

  • 1Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2) : 130-141.
  • 2Li T Y, Yorke J A. Period three implies chaos[ J]. American Mathematics Monthly, 1975, 82(10) : 985-992.
  • 3Chen G, Dong X. From Chaos to Order : Methodologies, Perspectives and Applications [ M ]. Singapore : World Scientific, 1998. 12-25.
  • 4姚洪兴,盛昭瀚.经济混沌模型中一种改进的反馈控制方法[J].系统工程学报,2002,17(6):507-511. 被引量:24
  • 5王兴元,武相军.变形耦合发电机系统中的混沌控制[J].物理学报,2006,55(10):5083-5093. 被引量:24
  • 6Rossler O E. An equation for hyperchaos[ J]. Physics Letters A, 1979, 71(2 -3) : 155-157.
  • 7Cafagna D, Grassi G. New 3D-scroll attractors in hyperchaotic Chua' s circuits forming a ring[ J]. International Journal of Bifurcation and Chaos, 2003, 13(10) : 2889-2903.
  • 8Li Y X, Tang W K S, Chen G R. Generating hyperchaos via state feedback control [ J ]. International Journal of Bifurcation and Chaos, 2005, 15(10) : 3367-3375.
  • 9Yassen M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[ J]. Chaos, Solitons & Fractals, 2005, 26(3) : 913-920.
  • 10Chen G, Ueta T. Yet another chaotic attractor [ J ]. International Journal of Bifurcation and Chaos, 1999, 9 (7): 1465-1466.

二级参考文献14

  • 1王兴元,刘明.用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步[J].物理学报,2005,54(6):2584-2589. 被引量:36
  • 2王兴元,武相军.不确定Chen系统的参数辨识与自适应同步[J].物理学报,2006,55(2):605-609. 被引量:42
  • 3Ott E,Grebogi C, Yorke J A.Controlling chaos[J]. Phy Rev Lett, 1990, 64:1196-1199
  • 4Pyragas K,Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback[J]. Phys Lett A,1993,180:99-102
  • 5Pyragas K.Predictable chaos in slightly perturbed unpredictable chaos system[J].Phys Lett A,1993,181:203-210
  • 6Just W. Limits of time-delayed feedback control[J]. Phys Lett A,1999,254:158-164
  • 7Chen Li Qun,Liu Yan Zhu.A parametric open-plus-closed-loop approach to control chaos in nonlinear oscillations[J]. Phys Lett A,1999,262:350-354
  • 8Morgul O.On the control of chaotic systems by using dither[J]. Phys Lett A,1999,262:144-151
  • 9Nakajima H, Ueda Y. Limitation of generalized delayed feedback control[J]. Phys D, 1998,111:143-150
  • 10Soliman A S.Fractals in nonlinear economic dynamical system[J].Chaos,Solitons and Fractals,1996,7:247-256

共引文献46

同被引文献18

  • 1谢英慧,张化光.一类时滞Ikeda混沌系统的自适应同步研究[J].东北大学学报(自然科学版),2007,28(4):481-484. 被引量:5
  • 2Pecora L M,Carrol T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64 (8):821-824.
  • 3ZHANG H G,XIE Y H,WANG Z L.Adaptive synchronization between two different chaotic neural networks with time delay[J].IEEE Transactions on Neural Networks,2007,18(6):1841-1844.
  • 4SUN Y H,CAO J D.Adaptive synchronization between two different noise-perturbed chaotic systems with fully unkown parameters[J].Physica A,2007,376:253-265.
  • 5TANG Y,OIU R H,FANG J A.Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays[J].Physics Letter A,2008,372:4425-4433.
  • 6TANG Y,FANG J A.Adaptive synchronization in an array of chaotic neural networks with mixed delays and jumping stochastically hybrid coupling[J].Commun Nonlinear Sci Numer Simulat,2009,14,3615-3628.
  • 7孙明轩.混沌通信的迭代学习辨识方法[C]//第27届中国控制会议论文集.北京:北京航空航天大学出版社,2008:293-297.
  • 8Pecora L M, Carrol T L. Synchronization in chaotic systems[J]. Physical Preview Letters, 1990, 64(8): 821 - 824.
  • 9Yang T. A survey of chaotic secure communication systems[J]. International Journal of Computational Cognition, 2004, 2(2): 81 - 130.
  • 10Fradkov A L, Evans R. Control of chaos: methods and applications in engineering[J]. Annual Reviews in Control, 2005, 29(1): 33 - 56.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部