期刊文献+

最小二乘支持向量机的参数优选方法及应用 被引量:10

Method for selecting parameters of least squares support vector machines and application
下载PDF
导出
摘要 支持向量机是一种新型的学习方法,该方法以结构风险最小化原则取代传统机器学习中的经验风险最小化原则,在小样本的机器学习中显示出了优异的性能.传统的支持向量机是解凸二次规划问题,而最小二乘支持向量机是解等式线性方程,显得尤为方便,通过建立适当的性能指标,用遗传算法优化最小二乘支持向量机的有关参数,并在非线性经济系统中应用.用最小二乘支持向量机对非线性经济系统进行预测并与其它方法的预测结果比较,结果证明,该模型的预测精确度是令人满意的,文中提出的方法是可行的. Support vector machine (SVM) is a kind of novel learning method, which is based on structural risk minimization principle, unlike traditional machine learning which is based on empirical risk minimization principle. SVM has shown powerful ability in learning with limited samples. But in SVM, the solution of the problem is characterized by a convex quadratic programming problem. In least squares SVM (LS-SVM), a least squares cost function is proposed so as to obtain a linear set of equations in dual space. Through genetic algorithm, parameters optimization can be solved. The model of LS-SVM is then used to forecast a nonlinear macroeconomic system. It is shown that the LS-SVM based on parameters optimization by genetic algorithm is simple and effective.
出处 《系统工程学报》 CSCD 北大核心 2009年第2期248-252,共5页 Journal of Systems Engineering
关键词 最小二乘支持向量机 遗传算法 参数优化 least squares support vector machines genetic algorithm optimization of parameters
  • 相关文献

参考文献6

二级参考文献13

  • 1Zhang jun, Walter Gilber G. Wavelet Neural Network for Function Learning[J].IEEE Transaction on Signal Processing. Vol.43.No.6.June 1995:1485-1495.
  • 2Hansen J V, Nelson R D. Neural Network and traditional time series methods: a synergistic combination in state economic forecasts[J].IEEE Transaction on Neural networks.1997,8(4):863-873.
  • 3Vapnik V N.Statistical learning theory[M].New York:1995.
  • 4Burges CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 5Johan Suykens A K.Nonlinear Modeling and Support Vector Machines[C]//IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001.
  • 6J.A.K.Suykens,J.Vandewalle.Least squares support vector machine classifiers[J].Neural Processing Letters (S1370-4621),1999,9(3):293-300.
  • 7Wenjian Wang,Zongben Xu,Weizhen Lu,Xiaoyun Zhang.Determination of the spread parameter in the Gaussian kernel for classification and regression[J].Neurocomputing (S0893-6080),2003,55:643-663.
  • 8Staelin Carl.Parameter selection for support vector machines[DB/OL] (2002.6)[2005.9].http://www.hpl.hp.com/techreports/2002/HPL-2002-354R1.html.
  • 9T Koga,K Iinuma,A Hirano.Motion compensated inter-frame coding for video conferencing[C]// In:National Telecommunications Conf.New Orleans,LA,1981:325.
  • 10TURAGA D,ALKANIAL M,Search algorithm for block match in motion estimation[DB/OL].(1997.3)[2005.9].http://www.ece.cma.edu/-ee899/project

共引文献107

同被引文献114

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部