期刊文献+

期望未来损失约束下的最优投资问题 被引量:4

Optimal investment problem under constraint of expected future loss
下载PDF
导出
摘要 在标准的Black-Scholes型金融市场下,建立了期望未来损失(expected future loss;EFL)约束下基于终端财富效用最大化的投资组合选择模型.运用鞅和优化方法,得到了一般效用投资者在投资计划期内任意时刻的最优财富和最优投资组合选择策略.在对数效用函数下,得到了投资者在投资计划期内任意时刻的最优财富和最优投资组合选择策略的显式表达式. In the standard Black-Scholes type of financial markets, the portfolio selection model based on utili- ty maximization from terminal wealth under the constraint of expected future loss (EFL) is established. The general utility investor's optimal wealth and optimal portfolio selection strategies at any time over an invest- ment planning horizon are derived by using methods of martingale and optimization. Especially, under loga- rithmic utility, explicit expressions for the investor' s optimal wealth and optimal portfolio selection strategies at any time over an investment planning horizon are obtained.
出处 《管理科学学报》 CSSCI 北大核心 2009年第2期54-59,共6页 Journal of Management Sciences in China
关键词 期望未来损失 效用函数 最优财富 最优投资 EFL utility function optimal wealth optimal investment
  • 相关文献

参考文献13

  • 1Jorion P. Value at Risk: The New Benchmark for Controlling Market Risk[ M]. New York: McGrow-Hill, 1997.
  • 2Hull J C. Options, Futures and Other Derivatives[ M]. Upper Saddle River: Prentice-Hall, 2000.
  • 3Artzner P, Delbaen F, Eber J, et al. Coherent measures of risk[ J]. Mathematical Finance, 1999, 9(3) : 203-228.
  • 4Szego G. Measures of risk[J]. Journal of Banking and Finance, 2002, 26(7) : 1253--1272.
  • 5高全胜.金融风险计量理论前沿与应用[J].国际金融研究,2004(9):71-78. 被引量:22
  • 6Rockafellar R T, Uryasev S. Conditional value-at-risk: For general loss distribution[J]. Journal of Banking and Finance, 2002. 26(7) : 1443-1471.
  • 7Anderson F, Mausser H, Rosen D, et al. Credit risk optimivation with CVaR criterion[ J]. Mathematical Programming, 2001, 89(2) : 273-291.
  • 8Kroknmal P, Palmquist J, Uryaserv S. Portfolio optimization with conditional VaR objectives and constraints[ J]. Journal of Risk, 2002, (2): 124-129.
  • 9Inoue A. On the worst conditional expectation[J]. Journal of Mathematical Analysis and Applications, 2003, 286 ( 1 ) : 237-247.
  • 10Benati S. Discrete optimization: The computation of the worst conditional expectation[J]. European Journal of Operational Research, 2004, 155(2) : 414-425.

二级参考文献4

  • 1Acerbi, C. (2001): Risk aversion and coherent risk measures: a spectral representation theorem. Working Paper, AbaXBank.
  • 2Acerbi, C., D. Tasche (2002) : On the coherence of expected shortfall. Journal of Banking and Finance, 27(6):pp. 1487 - 1503.
  • 3Alexander, G.J. and A. M. Baptista(2003): CVaR as a Measure of Risk: Implications for portfolio Selection. Working Paper UCLA and University of Minnesota and University of Arizona, February , . http://papers. ssrn. com/sol3/papers, cfm abstract_id = 424348
  • 4Andersson, F. , H. Mausser, D. Rosen and S. Uryasev(2001): Credit risk optimization with Conditional Value- at-Risk criterion. Mathematical Programming, Series B 89 , pp. 273 -- 291.

共引文献21

同被引文献80

引证文献4

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部