期刊文献+

基于独立成分分析的脑功能连接性分析

A Brain Functional Connectivity Analysis Based on Independent Component Analysis
原文传递
导出
摘要 静息脑功能连接性是研究脑功能的重要技术手段。我们提出了利用空域独立成分分析(Independent component analysis,ICA)来处理静息态功能磁共振(Functional magnetic resonance imaging,fMRI)数据,首次将静息态脑功能的低频振荡理论应用于ICA静态数据分析的成分选择,通过Z分数选择静息态下的活动点并去除独立噪点,然后通过频谱分析选择主要能量集中在0.01-0.1Hz的独立成分,进而采用聚类分析得出脑功能连接网络。 The resting state cortical functional connectivity is an important method in current brain researches.In this paper, we propose an approach for analyzing and manipulating the resting state functional magnetic resonance imaging (fMRI) data using spatial independent component analysis (sICA) method, and applying the low-frequency oscillations theory to the choice of component of interest (COD from the component obtained by slCA method. Firstly, we remove all the inactive voxels and independent voxels via Z value. Then, by making a spectrum analysis, we choose the COI with concentrations of energy between 0. 01 and 0. 1 Hz. And after that, we obtain the functional connectivity networks using hierarchical clustering.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第2期408-412,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(90820006 30770590) 教育部科学技术重点项目资助(107097)
关键词 空域独立成分分析 功能磁共振低频振荡 层次聚类脑功能连接性 Spatial independent component analysis (slCA) Functional magnetic resonance imaging (fMRI)Low-frequency oscillations Hierarchical clustering Brain functional connectivity
  • 相关文献

参考文献8

  • 1DODEL S, HERRMANN J M, GEISEL T. Functional connectivity by cross-correlation clustering[J], Neurocomputing, 2002, 44-46:1065-1070.
  • 2GREICIUS M D, KRASNOW B, REISS A L, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A, 2003, 100(1) :253-258.
  • 3van de VEN V G, FORMISANO E, PRVULOVIC D, et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest[J]. Hum Brain Map, 2004, 22(3):165-178.
  • 4范丽伟,唐焕文,唐一源.独立成分分析应用于fMRI数据研究[J].大连理工大学学报,2003,43(4):399-402. 被引量:6
  • 5HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans Neural Netw, 1999, 10(3):626.
  • 6CHEN H F, YAO D Z, CHEN W F, et al. Delay correlation subspace decomposition algorithm and its application in fMRI [J]. IEEE Trans Med Imaging, 2005, 24(12) : 1647-1651.
  • 7CHEN H F, YUAN H, YAO D Z, et al. An integrated neighborhood correlation and hierarchical clustering approach of functional MRI[J]. IEEE Trans BME, 2006, 53(3) :452-458.
  • 8CORDES D, HAUGHTON V, CAREW J D, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data[J]. Magn Reson Imaging, 2002, 20(4):305-317.

二级参考文献7

  • 1唐一源,张武田,马林,翁旭初,李德军,何华,贾富仓.默读汉字词的脑功能偏侧化成像研究[J].心理学报,2002,34(4):333-337. 被引量:38
  • 2JUTTEN C, HERAULT J. Blind separation of sources,Part I: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24(1):1-10.
  • 3COMMON P. Independent component analysis,A new concept? [J]. Signal Processing, 1994,36(3):287-314.
  • 4HYVARINEN A, OJA E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000,13(4): 411-430.
  • 5MCKEOWN M J, MAKEIG S, BROWN G G,et al.Analysis of fMRI data by blind separation into independent spatial components [J]. Human BrainM apping, 1998,6(3): 160-188.
  • 6CALHOUN V D, ADALI T, PEARLSON G D, etal. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms[J]. Itunlan Brain Mapping, 2001,13(1):43-53.
  • 7STONE J V, PORRILL J, BUCHEL C, et al.Spatial, temporal, and spatiotemporal independent component analysis of FMRI data [A]. Proceedings of Leeds Statistical Research Workshop [C].Leeds : Leeds University Press, 1999.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部