摘要
静息脑功能连接性是研究脑功能的重要技术手段。我们提出了利用空域独立成分分析(Independent component analysis,ICA)来处理静息态功能磁共振(Functional magnetic resonance imaging,fMRI)数据,首次将静息态脑功能的低频振荡理论应用于ICA静态数据分析的成分选择,通过Z分数选择静息态下的活动点并去除独立噪点,然后通过频谱分析选择主要能量集中在0.01-0.1Hz的独立成分,进而采用聚类分析得出脑功能连接网络。
The resting state cortical functional connectivity is an important method in current brain researches.In this paper, we propose an approach for analyzing and manipulating the resting state functional magnetic resonance imaging (fMRI) data using spatial independent component analysis (sICA) method, and applying the low-frequency oscillations theory to the choice of component of interest (COD from the component obtained by slCA method. Firstly, we remove all the inactive voxels and independent voxels via Z value. Then, by making a spectrum analysis, we choose the COI with concentrations of energy between 0. 01 and 0. 1 Hz. And after that, we obtain the functional connectivity networks using hierarchical clustering.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2009年第2期408-412,共5页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(90820006
30770590)
教育部科学技术重点项目资助(107097)
关键词
空域独立成分分析
功能磁共振低频振荡
层次聚类脑功能连接性
Spatial independent component analysis (slCA) Functional magnetic resonance imaging (fMRI)Low-frequency oscillations Hierarchical clustering Brain functional connectivity