期刊文献+

二个指数函数泰勒展开式的余项估计

The Estimation of the Remainder Terms in Taylor Series Expansion of theTwo Exponential Functions
下载PDF
导出
摘要 利用几何凸函数的积分性质和二个指数函数的几何凸性,分别得到了ex(x>0)和e-x(x>0)的泰勒展开式余项的一个新的估计,得出了两个新的不等式,应用这两个新的不等式可以有效地改进一些影响较广的已知结果,并且对具有同样性质的祁锋不等式给出一个简证. By making use of the integral property of geometrically convex functions and geometrical convexity of the two exponential functions, this paper obtains two new estimation formulas of the remainder term in Taylor expansion of e^x (x〉0) and e^-x (x〉0), and two new inequalities. The new inequalities can be used to effectively improve some widely - affected known results. Meanwhile, it briefly proves the correctness of Qi Feng's inequality that has the same property.
出处 《湖州师范学院学报》 2009年第1期11-15,共5页 Journal of Huzhou University
关键词 泰勒展开式 余项 不等式 几何凸函数 Taylor expansion remainder term geometrically convex functions inequality
  • 相关文献

参考文献13

  • 1MATKOWSKI J. Lp -like paranorms,Selected Topics in Functional Equations and Iteration Theory[J].Proceedings of the Austrian -Polish seminar, Graz Math Bet, 1992,316 : 103 - 138.
  • 2CONSTANTIN P. Niculescu, Convexity according to the geometric mean [J].Mathematical Inequalities & Applications, 2000(2) : 155-167.
  • 3张小明.几何凸函数的几个定理及其应用[J].首都师范大学学报(自然科学版),2004,25(2):11-13. 被引量:21
  • 4ZHANG X M,YANG Z H. Differential criterion of n-dimensional geometrically convex functions [J].JournaI of Applied Analysis, 2007,13(2) : 197-208.
  • 5ZHANG X M,CHU Y M. The geometrical convexity and concavity of integral for convex and concave functions [J]. International Journal of Modern Mathematics, 2008,3(3) : 345-350.
  • 6ZHANG X M,CHU Y M. The Schur geometrical convexity of integral arithmetric mean [J].International Journal of Pure and Applied Mathematics, 2007,41 (7): 919-925.
  • 7ZHANG X M. S - geometric convexity of a function involving Maclaurin's elementary symmetric mean [J].Journal of Inequalities in Pure and Applied Mathematics, 2007,8(2) :156-165.
  • 8ZHANG X M,XU T J,SITU L B. Geometric convexity of a function involving Gamma function and applications to inequality Theory [J].Journal of Inequalities in Pure and Applied Mathematics, 2007,8(1) : 144-153.
  • 9张小明.几何凹函数的积分的几何凹性.不等式研究通讯,2006,13(3):299-304.
  • 10张小明.关于几何凸函数的Hadamard型不等式[J].数学的实践与认识,2004,34(9):171-176. 被引量:10

二级参考文献3

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部