期刊文献+

利用图像处理和分析技术测定涤棉混纺比 被引量:1

Determination of Ployester/Cotton Blending Ratio by Image Processing and Analysis Technology
下载PDF
导出
摘要 通过数学形态学操作对纱线截面图像进行预处理,在目标和背景之间形成了明显灰度差异。提出并使用光斑扩散方法得到了图像中各个纤维截面的轮廓线。在此基础上,构建了特征指标以区分涤纶和棉纤维,并对探测到的目标抽取特征数据。最后,对特征数据进行聚类和分类,从而计算出涤棉混纺比。 Yarn's cross-section image with notable grayness difference between targets and background is obtained by means of mathematical morphology operations. The Facula Diffusion method is advanced and applied to take out the contours of fiber cross-sections in the image. Based upon this, the feature index is composed to distinguish between ployester and cotton fibers, and the data of the feature index is extracted from the detected targets. Finally, the feature data undergoes clustering and classification, and the blending ratio of ployester/cotton yarn is figured out.
作者 袁利华
出处 《丝绸》 CAS 北大核心 2009年第4期44-46,共3页 Journal of Silk
关键词 图像处理 混纺比 数学形态学 光斑扩散 特征指标 Image processing Blending ratio Mathematical morphology Facula diffusion Feature index
  • 相关文献

参考文献1

  • 1GB/T2910-1997.纺织品二组分纤维混纺产品定量化学分析法[S].[S].,..

共引文献2

同被引文献20

  • 1邵东锋,张一心.基于图像处理的纱线条干检测[J].上海纺织科技,2005,33(8):37-38. 被引量:5
  • 2陈雁,陈伟伟.图像处理技术在服装褶皱评价中的应用[J].纺织学报,2006,27(9):94-96. 被引量:11
  • 3陈勇,温演庆,朱谱新.计算机图像处理技术应用于纺织检测[J].纺织科技进展,2006(6):7-10. 被引量:19
  • 4DENG Z M, WEI K. A new measuring method of wool fiber diameter based on image processing[C]. 2010 2nd International Conference on Signal Processing Systems, Wuhan, 2010: 2587-2590.
  • 5SHANG S Y, LIU Y X, YI H Y, et al. The research on identification of wool or cashmere fibre based on the digital image[C].Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 2010:11-14.
  • 6WANG X H, WANG J Y, ZHANG J L, et al. Study on the detection of yarn hairiness morphology based on image processing technique[C]. 2010 International Conference on Machine Learning and Cybernetics, Qingdao, 2010: 2332-2336.
  • 7ZHOU J, LI L Q. Automatic inspection of silk fabric density based on multi-scale wavelet analysis[J].Advanced Materials Research, 2011(175-176): 371-375.
  • 8TSAI I S, HUM C. Automatic inspection of fabric defects using an artificial neural network technique[J]. Textile Research Journal, 1996, 66(7): 174-182.
  • 9HU M C, TSAI I S. Fabric inspection based on best wavelet packet bases[J].Textile Research Journal,2000,70(8): 662-670.
  • 10ZHANG J M, LI L R. A new algorithm for fabric defect detection based on image distance difference[C]. 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, 2009: 217-219.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部