期刊文献+

一种基于NTRU格的数字签名 被引量:3

Digital Signature Scheme Based on NTRU Lattice
下载PDF
导出
摘要 NTRU(Number Theory Research Unit)是一种新型的公钥密码体制,因其高效、快速和运算简单等特点,已得到越来越广泛的应用.其安全性建立在大维数格中的数学难题之上,为此,在研究NTRU算法和格理论的基础上,设计了一种建立在最近向量难题上的数字签名方案. NTRU is a new kind of public-key cryptosystem. It already gets more and more applications because of characteristics such as high-efficiency, fast and easy-operation. The security of the NTRU public-key cryptosystem is based on the hard lattice problem. Then one kind of digital signature scheme was designed on the basis of studying the NTRU algorithm and lattice theory. The scheme is established on the closest vector problem.
作者 李筱熠
出处 《上海工程技术大学学报》 CAS 2009年第1期56-59,共4页 Journal of Shanghai University of Engineering Science
关键词 NTRU公钥密码体制 最近向量问题 数字签名 NTRU public key cryptosystem lattice closest vector problem digital signature
  • 相关文献

参考文献4

  • 1CAI J Y. Some recent progress on the complexity of lattice problems[C]//Processings of the 14th IEEE Conference on Computational Complexity, Washington: IEEE Computer Society, 1999 : 158 - 178.
  • 2余位驰,张文芳,何大可.一种最短向量已知格的生成方法[J].计算机工程,2006,32(15):19-21. 被引量:2
  • 3HOFFSTEIN J,PIPHER J. NTRUSign: digital signatures using the NTRU[EB/OL]. (2002 - 04 - 02) E2003 - 04 - 12 ]. http://www.ntru. com/cryptolab/ articles.htm.
  • 4DINUR I, KINDLER G, SAFRA S. Approximating CVP to within almost polynomial factors is NP-hard[C] //Processings of the 39^th Annual Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 1998 : 99.

二级参考文献10

  • 1Ajtai M.Generating Hard Instances of Lattice Problems[C].Proceedings of the 28^th Annual ACM Symposium on Theory of Computing,1996:99-108.
  • 2Ajtai,Dwork C.A Public-key Cryptosystem with Worst-case/average-case Equivalence[C].Proc.of the 29^th ACM Symposium on Theory of Computing,1997:284-293.
  • 3Jeffrey H,Jill P,Joseph H.Silverman,NTRU:A Ring-based Public Key Cryptosystem[Z].http://www.ntru.com.
  • 4Goldreich O,Goldwasser S,Halevi S.Collision-free Hashing from Lattice Problems[Z].Theory of Cryptography Library:Record 96-09,http://theory.lcs.mit.edu/~tcryptol/1996/96-09.html.
  • 5Goldreich O,Goldwasser S,Halevi S.Public-key Cryptosystems from Lattice Reductions Problems[Z].ECCC Report TR96-056,http://www.eccc.uni-trier.de/eccc-local/Lis ts/TR-1996.html.
  • 6Cai J Y.Some Recent Progress on the Complexity of Lattice Problems[C].Proc.of FCRC Available at the Electronic Colloquium on Computational Complexity,1999.
  • 7Phong Q N,Jacques S.The Two Faces of Lattices in Cryptology,J.H.Silverman(Ed.):Cryptography and Lattices 2001[M].Berlin Heidelberg:Springer-Verlag,2001.
  • 8Daniele M.On the Hardness of the Shortest Vector Problem[D].MIT,1998.
  • 9Daniele M.Generalized Compact Knapsacks,Cyclic Lattices,and Efficient One-way Functions from Worst-case Complexity Assumptions.Proceeding of the 43^rd Annual IEEE Symposium on Foundations of Computer Science,2002.
  • 10数学辞海委员会数学辞海[M].山西教育出版社、东南大学出版社、中国科学技术出版社联合出版,2002.

共引文献1

同被引文献20

  • 1张卷美,曹杰,刘年义,杨亚涛,李子臣.一种基于NTRU新型签名方案的设计[J].四川大学学报(工程科学版),2015,47(1):49-53. 被引量:5
  • 2张文芳,余位驰,何大可,王小敏.一种基于格理论的数字签名方案[J].计算机科学,2006,33(3):93-96. 被引量:4
  • 3余位驰,张文芳,何大可.一种最短向量已知格的生成方法[J].计算机工程,2006,32(15):19-21. 被引量:2
  • 4HOFFSTEIN J,PIPHER J,SILVERMAN J H.NTRU:a new highspeed public key cryptosystem[C]// Algorithm Number Theory-ANTS III.Berlin:Springer-Verlag,1998:267-288.
  • 5MICCIANCIO D.Generalized compact knapsacks,cyclic lattices,and effcient one-way functions[J].Computational Complexity,1997,16(4):365-411.
  • 6HOFFSTEIN J,PIPHER J,SILVERMAN J H.NSS:the NTRUsignature scheme[C]// Proceedings of Cryptology Eurocrypt 2001.Berlin:Springer-Verlag,1997:211-228.
  • 7HOFFSTEIN J,PIPHER J,SILVERMAN J H.NSS:an NTRU lat-tice-based signature scheme[C]// Proceedings of Cryptology Euro-crypt 2001.Berlin:Springer-Verlag,2001:123-137.
  • 8CASH D,HOFHEINZ D.Bonsai trees,or how to delegate a latticebasis[C]// Proceedings of the 29 th Annual International Conferenceon Theory and Applications of Cryptographic Techniques.Beilin:Springer-Verlag,2010:523-552.
  • 9CHANG C C,CHANG Y F.Signing a digital signature without u-sing one-way Hash functions and message redundancy schemes[J].IEEE Communications Letters,2004,8(8):485-487.
  • 10FIAT A,SHAMIR A.How to prove yourself:practical solutions toidentification and signature problems[C]// Proceedings of Cryptol-ogy Eurocrypt 1986.London:Springer-Verlag,1987:186-194.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部