期刊文献+

解离散系数滤波器设计问题的分支定界算法 被引量:1

Branch-and-bound algorithm for design of FIR filters with discrete coefficients
下载PDF
导出
摘要 基于离散系数滤波器设计问题已有的半定规划松弛模型,利用文献[6]的方法给出了该问题的二次规划松弛模型,该模型能给出比半定规划模型更好的界,然后运用分支定界方法求解该模型。与随机扰动方法相比,该方法能得到一个性能更好的次优解,对于精度要求较高的滤波器设计问题,这种方法非常有效,并通过了仿真实验的证实。 In this paper,a quadratic programming method based on semidefinite programming is given to solve the design of FIR filters with discrete coefficients in the light of literature 6,which can give a better bound than a semidefinite programming relaxation method.Based on the model,the Branch-and-Bound algorithm is used to solve this problem.Compared with the conventional randomized method,this one can obtain a better sub-optimal performance.This method is very effective for the design of high-precision FIR digital filters.The simulations have proved it.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第13期72-74,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60574075 No.60674108~~
关键词 数字滤波器 离散系数 分支定界 二次规划 半定规划 digital filters discrete coefficients Branch-and-Bound quadratic programming semidefinite programming
  • 相关文献

参考文献12

  • 1刘树棠.数字信号处理之使用MATLAB[M].西安:西安交通大学出版社,2002.
  • 2Lim Y C,Yang R,Li D,et al.Signed power-of-two (SPT) term allocation scheme for the design of digital filters[C]//Proc ISAS,Monterey,CA,June 1998.
  • 3li-Kaakinen J T Y,Saramaki T A.An algorithm for the design of multiplierless approximately linear-phase lattice wave digital filters[C]//Proc ISCAS' 2000,2:77-80.
  • 4Lim Y C,Yu Y J.A successive reoptimization approach for the design of discrete perfect recon-construction lattice filter bank[C]//Proc SICAS' 2000,2:69-72.
  • 5Lu W S.Design of FIR filters with discrete coefficients:a semidefinite programming relaxation approach[C]//Proc of IEEE ISCAS,2001,Ⅱ:297 -300.
  • 6刘红卫,王新辉,刘三阳.基于半定规划多用户检测问题的二次规划法[J].系统工程与电子技术,2003,25(3):355-358. 被引量:1
  • 7Toh K C,Tood M J,Tutuneu R H.A MATLAB software for semidefinite programming[EB/OL].(1999-12).http://hdl.handle.net/1813/9061.
  • 8Toh K C,Tood M J,Tutuncu R H.On the implementation and usage of SDP3-a MATLAB software package for semidefinitequadratic-linear programming version4.0[Z].2006-07-17.
  • 9马振华.现代应用数学手册运筹学与最优化理论卷[M].北京:清华大学出版社,1998..
  • 10Goemans M X,Williamson D P.Improved approximation algorithm for max cut and satisfiability problems using semidefinite programmming[J].Journal of ACM,1995,42(6):1115-1145.

二级参考文献8

  • 1马振华.现代应用数学手册运筹学与最优化理论卷[M].北京:清华大学出版社,1998..
  • 2Lu W S.Design of FIR filters with discrete coefficients:a semidefinite programming relaxation approach[C].Proc.of IEEE ISCAS,2001,Ⅱ:297-300.
  • 3Antoniou A.Digital filters:analysis,design and applications.2nd ed[M].McGraw-Hill,1993:100-133.
  • 4Wu S P,Boyd S.FIR filter design via semidefinite programming and spectral factorization]C].Proc.35th Conf.Decision and Control,Kobe,Japan,1996:271-276.
  • 5Burer S,Monteiro R D C,Zhang Ying.Interior-point Algorithms for semidefinite programming based on a nonlinear formulation[J].Computational Optimization and Application,2002,22 (1):49-80.
  • 6Beck A,Teboulle M.Global optimality conditions for quadratic optimization problems with binary constraints[J].SIAM Journal of Optimization,2000,11(1):179-188.
  • 7Goemans M X,Williamson D P.Improved approximation algorithm for max cut and satisfiability problems using semidefinite programming[J].Journal of ACM,1995,42 (6):1115-1145.
  • 8Helmberg C.Semidefinite Programming for Combinatorial Optimization[M].Konrad-Zuse-Zentrum for Information Stechnik,Berlin,Germany,2000:20-50.

共引文献4

同被引文献13

  • 1Hung Q T, Thang L N. Design of FIR filter with discrete coeffi- cients based on mixed integer linear programming. 9th Interna- tional Conference on Signal Processing, ICSP 2008. IEEE, 2008.
  • 2Samueli H. The design of multiplierless digital data transmission filters with powers of-two coefficients. Proc IEEE Int Telecom- mun Symp Rio de Janeiro, Brazil, 1990:425-429.
  • 3Lu W S. Design o{ FIR digital filters with discrete coeficients via convex relaxation. Proc IEEE Int Syrup Circuits Syst, Kobe, Ja pan, 2005 : 1831-1834.
  • 4Lu W b. Design ot P IH lllters with Cllscrete coelllctents: a semi- definite programming relaxation approach. Proc of IEEE ISCAS,2001,11:297-300.
  • 5Zibulevsky M, Elad M. L1 L2 optimization in signal and image processing, IEEE Signal Process Mag, 2010 , 27 : 76-88.
  • 6Elad M, Figueiredo M A T, Ma Y. On the role of sparse and re- dundant representations in image processing. Pro IEEE, 2010 98(6)972 982.
  • 7Wei Dennis, Oppenheim A V. A branch and-bound algorithm for Quadratically-Constrained Sparse Filter Design. IEEE Transactions on Signal Processing, 2013 61 (4) : 1006-1018.
  • 8Tseng C C, Lee S L. Design of sparse constrained FIR filter u sing orthogonal matching pursuit method. 2012 IEEE Interna tional Symposium on Intelligent Signal Processing and Commu nication Systems (ISPACS 2012), 2012 4 7.
  • 9Jiang A, Kwan H K, Zhu Yanping. Peak-error constrained sparse FIR filter design using iterative SOCP. IEEE Transac- tions on Signal Processing, 2012 60 (8) : 4035-4044.
  • 10Baran T, Wei D, Oppenheim A V. Linear programming algo- rithms for sparse filter design. IEEE Trans Signal Process, 201058:1605-1617.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部