摘要
自动获取视频语义信息有助于提高基于内容的视频检索系统的性能。其主要方法之一是利用视频语义网络推理得到视频的语义。为了获得视频语义网络,在传统的三阶段相关性分析算法(TTPDA)的基础上,提出了改进的三阶段相关性分析算法(ITPDA),用以学习语义概念之间的联系,以便对视频进行语义标注。相比于TTPDA、ITPDA算法的优点是:在无法获得节点的排序或只能获得部分节点排序的情况下,也能较快地学习得到语义网络结构,而且确定语义网中边方向的时间复杂度从TTPDA的O(n4)降为O(n2)(其中n是语义网中节点的数目)。实验结果表明:利用ITPDA算法建立语义网是行之有效的,而且在所得到的语义网上进行视频语义标注,其效果优于TTPDA。
The recognition of semantic information from visual content is an important task in video retrieval.Semantic network which captures the semantic relationships among concepts can be used for video annotation.In this paper,an improved three-phase dependency analysis(ITPDA) algorithm is presented to automatically discover the relationship network among the concepts, and then we can use the constructed semantic network to annotate an unknown video shot.The advantage over the traditional three-phase dependency analysis (TFPDA) algorithm is that no requirement for the users to provide any node ordering.The system can automatically orient the edges of the network when users can not give a node ordering.The computation complexity is reduced from O(N^4) to O(N^2) (N is the number of nodes in the network) when orienting the edges.Experimental results show that ITPDA performs better than TTPDA algorithm in the application of automatic semantic video annotation.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第13期146-149,共4页
Computer Engineering and Applications
关键词
贝叶斯网络
语义网络
传统三阶段相关性分析算法
改进的三阶段相关性分析算法
Bayesian network
semantic network
traditional three-phase dependency analysis (TTPDA) algorithm
improved three-phase dependency analysis(ITPDA) algorithm