期刊文献+

传感器网络感知数据自适应去噪方法 被引量:1

Adaptive method for cleaning sensory data in wireless sensor networks
下载PDF
导出
摘要 在传感器网络研究领域中,去除感知数据含有的噪声是个重要的研究课题。现存的去噪算法没有考虑节点密度不均匀及信息拥塞的情况,从而过多地消耗了能量。考虑这两个因素,使用时间维加权的方法,提出了一个基于节点密度的网内自适应去噪算法-DHA(density-based hybrid approach)。DHA能够根据节点密度来进行算法决策,并且在时间维进行加权,能够对数据变化作出快速反应并且提高数据精度。实验结果表明,DHA方法能够在保证良好的去噪效果、快速响应时间的前提下,比目前最好的去噪算法WMA(weighted moving average-based)更节省能量。 Cleaning sensory data is an important problem in wireless sensor networks(WSNs).Existing cleaning algorithms haven't considered the factor of sensor density's ununiformity and information congestion,so they will consume more energy.This paper takes these two factors into account,and proposes a density-based adaptive algorithm named DHA (density-based hybrid approach) for cleaning sensory data in WSNs.The DHA algorithm can do better decision for cleaning sensor data along with different node density,and it adopts adding weight to data in time dimension which makes it response fast to a data change.The experimental results show that DHA can conserve more energy than existing best algorithm WMA (weighted moving average-based) while cleaning effectively and offering quicker response time.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第13期150-155,共6页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)No.2006CB303000 国家自然科学基金青年科学基金No.60803015 中国博士后基金No.20080430902 哈尔滨市青年科技创新人才研究专项资金No.2008RFQXG107 黑龙江省博士后基金No.LRB08-021 黑龙江省自然科学基金No.F200612 黑龙江省教育厅面上项目No.11511272~~
关键词 传感器网络 噪声 节点密度 感知数据去噪算法 wireless sensor network noise sensor density algorithm for cleaning sensory data
  • 相关文献

参考文献13

  • 1Branch J,Szymanski B,Giannella C,et al.In-network outlier detection in wireless sensor networks[C]//Ichikawa H,Raynal M.Proceedings of the 26th IEEE Intematioual Conference on Distributed Computing Systems(ICDCS 2006).Washington:IEEE Computer Society,2006:51-62.
  • 2Jain A,Chang E Y,Wang Y F.Adaptive stream resource management using kalman filters[C]//Weikum G,Konig A C,Deβloch S.Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD 2004).New York:ACM Press,2004:11-22.
  • 3Wu G,Wu Y,Jiao L,et al.Multi-camera spatio-temporal fusion and biased sequencedata learning for security surveillance[C]// Rowe L A,Vin H M,Plagemann T.proceedings of the Eleventh ACM International Conference on Multimedia(MM 2003).New York:ACM Press,2003:528-538.
  • 4Elnahrawy E,Nath B.Cleaning and querying noisy sensors[C]//Ayani R,Chiasserini C F,Hassanein H S.Proceedings of the 6th International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM,2003).New York:ACM Press,2003:78-87.
  • 5Hellerstein J,Hong W,Madden S,et al.Beyond average:Towards sophisticated sensing with queries[C]//Zhao Feng,Guibas L J.Lecture Notes in Computer Seience 2634:Information Processing in Sensor Networks(IPSN 2003).New York:Springer,2003:63-79.
  • 6Jeffery S R,Alonso G,Franklin M J,et al.Declarative support for sensor data cleaning[C]//Fishkin K P,Schiele B,Nixon P.Lecture Notes in Computer Seience 3968:Pervesive Computing,4th International Conference (PERVASIVE 2006).New York:Springer,2006:83-100.
  • 7Mukhopadhyay S,Panigrahi D,Dey S.Model based error correction for wireless sensor networks[C]//Znati T,Raghavendra C S.Proc of the 1st IEEE Conf on Sensor and Ad Hoc Communications and Networks(SECON 2004).Santa Clara:IEEE Press,2004:575-584.
  • 8Niculeseu D,Nath B.Error characteristics of ad hoc positioning systems(aps)[C]//Murai J,Perkins C E,Tassiulas L.Proceedings of the 5th ACM Interational Symposiam on Mobile Ad Hoc Networking and Computing (MobiHoc 2004).New York:ACM Press,2004:20-30.
  • 9Subramaniam S,Palpanas T,Papadopoulos D,et al.Online outlier detection in sensor data using non-parametric models[C]//Dayal U,Whang Kyu-Young,Lomet D B.Proceedings of the 32nd International Conference on Very Large Data Bases(VLDB 2006).New York:ACM Press,2006:187-198.
  • 10Zhuang Y,Chen LIn-network outlier cleaning for data collection in sensor networks[C]//Lee Dongwon,Li Chen.Proceedings of the First Int'1 VLDB Workshop on Clean Databases(CleanDB 2006).New York:ACM Press,2006:41-48.

同被引文献11

  • 1MARTINCIC F,SCHWIEBERT L.Distributed event detection in sensor networks [C]// ICSNC'06:Proceedings of the 2006 IEEE International Conference on Systems and Networks Communications.Piscataway:IEEE Press,2006:43.
  • 2AKYILDIZ I F,VURAN M C,AKAN O B.On exploiting spatial and temporal correlation in wireless sensor networks [C]// WiOpt'04:Proceedings of the 2004 Modeling and Optimization in Mobile,Ad Hoc and Wireless Networks.Cambridge:University of Cambridge,2004:71-80.
  • 3JEFFERY S R,ALONSO G,FRANKLIN M J,et al.Declarative support for sensor data cleaning [C]// Proceedings of the 4th International Conference on Pervasive Computing.Berlin:Springer,2006:83-100.
  • 4SHENG B,LI Q,MAO W,et al.Outlier detection in sensor networks [C]// Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing.New York:ACM Press,2007:219-228.
  • 5ZHUANG Y,CHEN L,WANG X S,et al.A weighted moving average-based approach for cleaning sensor data [C]// ICDCS'07:Proceedings of the 27th IEEE International Conference on Distributed Computing Systems.Piscataway:IEEE Press,2007:38-38.
  • 6BRANCH J W,GIANNELLA C,SZYMANSKI B,et al.In-network outlier detection in wireless sensor networks [J].Knowledge and Information Systems,2013,34(1):23-54.
  • 7ZHANG Y,MERATNIA N,HAVINGA P.Outlier detection techniques for wireless sensor networks:a survey [J].IEEE Communications Surveys and Tutorials,2010,12(2):159-170.
  • 8FRANKE C,GERTZ M.ORDEN:outlier region detection and exploration in sensor networks [C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2009:1075-1078.
  • 9JEFFERY S R,GAROFALAKIS M,FRANKLIN M J.Adaptive cleaning for RFID data streams [C]// Proceedings of the 32nd International Conference on Very Large Data Bases.New York:ACM Press,2006:163-174.
  • 10ZHANG Z,YANG D,ZHANG T,et al.A study on the method for cleaning and repairing the probe vehicle data [J].IEEE Transactions on Intelligent Transportation Systems,2013,14(1):419-427.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部