期刊文献+

改进GA-BPNN在短期电力负荷预测中的应用 被引量:2

Research of short-term power load forecasting based on improved GA-BP neural network model
下载PDF
导出
摘要 为了避免传统方法预测短期电力负荷建模复杂性,将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络,结合电力负荷历史数据,对短期电力负荷进行仿真预测。仿真结果表明,该混合算法有效地解决了常规BP算法学习网络权值收敛速度慢、易陷入局部极小和GA算法独立训练神经网络速度缓慢等问题,具有较快的收敛速度和较高的预测精度。 In order to avoid the complex forecasting model of short-term load by traditional methods,the hybrid algorithm which combines improved GA with BP is used to train artificial neural network for carrying on the simulation forecast to the short-term power load according to the past power load data.The results show that the defects of conventional BP algorithm,i.e.,easy to fall into local minimum,slow convergence speed of the weight value of learning network,and that of GA,i.e.,the training speed is too slow when GA is used to train the neural network effectively improved by itself, are effectively improved by the hybrid algorithm and the hybrid algorithm possesses faster convergence speed and higher calculation accuracy.
作者 张勇 杨云
出处 《计算机工程与应用》 CSCD 北大核心 2009年第13期223-226,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.59732050 陕西省自然科学基金No.SJ08E103~~
关键词 短期电力负荷 遗传算法 人工神经网络 反向传播 预测 short-term load GA(genetic algorithm) artificial neural network BP(error back propagation) forecasting
  • 相关文献

参考文献9

二级参考文献21

  • 1王兆霞,陈增强,袁著祉.基于模糊神经网络的网络业务分类研究[J].计算机工程与应用,2004,40(22):3-5. 被引量:5
  • 2王娜,申东日,陈义俊.BP网络改进算法及其在故障诊断中的应用[J].自动化技术与应用,2004,23(5):20-22. 被引量:9
  • 3杨大力,刘泽民.多层神经网络同伦连续BP算法的递归实现[J].电子学报,1994,22(10):97-100. 被引量:5
  • 4MartinT Hagan HowardB Demuth MarkH Beale.神经网络设计[M].北京:机械工业出版社,2002..
  • 5Martin Hagan,Howard Demuth,Mark H Beale.Neural Network Design[M].北京:机械工业出版社,2002.
  • 6Martin T Hagan,Howard B Demuth,Mark Beale.NEURAL NETWORK DESIGN[M].China Machine Press,2002-08.
  • 7Qiang Shen,Alexios Chouchoulas,A rough-fuzzy approach for generating classification rules[J],Pattem Recognition, 2002 ;35 (11 ).
  • 8Toeho Hong,Ingoo Han,Knowledge-based data mining of news information on the Internet using congnitive maps and neural networks[J], Expert Systems with Applications,2002 ; 23 (8).
  • 9从爽.MATLAB工具箱的神经网络理论与应用[M](第二版)[M].合肥:中国科学技术大学出版社,2003.82-87.
  • 10C. Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks[J]. IEEE Proceedings.1992,139(3):301-310

共引文献27

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部