期刊文献+

Hole Spin Relaxation in an Ultrathin InAs Monolayer

Hole Spin Relaxation in an Ultrathin InAs Monolayer
下载PDF
导出
摘要 We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (τ1h = 196± 17 ps) that is in the magnitude similar to electrons (t1e= 354 ± 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics. We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (τ1h = 196± 17 ps) that is in the magnitude similar to electrons (t1e= 354 ± 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第5期210-213,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 1067 4131 and 60625405, the National Basic Research Program of China under Grant No 2007CB924904, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2.YW.W09, and the Hundred Talents Program of Chinese Academy of Sciences.
关键词 gamma-ray bursts GAMMA-RAYS RELATIVITY gamma-ray bursts, gamma-rays, relativity
  • 相关文献

参考文献24

  • 1Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer).
  • 2Ohno Y, Terauchi R, Adachi T, Matsukura F and Ohno H 1999 Phys. Rev. Lett. 83 4196.
  • 3Kikkawa M J and Awschalom D D 1998 Phys. Rev. Lett. 80 4313.
  • 4Gotoh H, Ando H, Kamada H, Chavez-Pirson A and Temmyo J 1998 Appl. Phys. Lett. 72 1341.
  • 5Gupta A J, Awschalom D D, Peng X and Alivisatos P A 1999 Phys. Rev. B 59 R10421.
  • 6Paillard M, Marie X, Renucci P, Amand T, Jbeli A and Gerard M J 2001 Phys. Rev. Lett. 86 1634.
  • 7Stievater H T, Li X, Cubel T, Steel G D, Gammon D, Katzer S D and Park D 2002 Appl. Phys. Lett. 81 4251.
  • 8Gundogdu K, Hall C K, Boggess F T, Deppe G D and Shchekin B O 2004 Appl. Phys. Lett. 84 2793.
  • 9Gundogdu K, Hall C K, Koerperick J E, Pryor E C, Flatte E M, Boggess F T, Shchekin B O and Deppe G D 2005 Appl. Phys. Lett. 86 113111.
  • 10Braun F P, Marie X, Lombez L, Urbaszek B, Amand T, Renuccl P, Kalevich K V, Kavokin V K, Krebs O, Voisin P and Masumoto Y 2005 Phys. Rev. Lett. 94 116601.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部