期刊文献+

一种基于PSOSVM的盲隐写分析方法

A Blind Steganalysis Method Based on PSOSVM
下载PDF
导出
摘要 针对盲隐写分析中的特征选择问题,提出了结合粒子群优化算法(PSO)的支持向量机分类器进行特征选择的方法。该方法使用非线性支持向量机作为分类器,使用PSO为支持向量机寻找最优的图像特征集合作为训练集和测试集,同时选择最优的支持向量机参数,进而利用最优的特征集和支持向量机参数对隐写图像进行检测。实验结果表明,该优化方法明显优于Farid,ANOVA和F-score方法,提高了检测隐写图像的成功率和系统检测效率。 To study the feature selection in blind steganalysis, a new feature selection method based on Particle Swarm Optimization and Support Vector Machine(PSOSVM) is proposed. Using nonlinear SVM as classifier, this method employs the Particle Swarm Optimization(PSO) algorithm to find the best image feature sets as training and testing sets and chooses the best Support Vector Machine(SVM) parameters at the same time. Then the selected image feature sets and parameters are used to detect the stego-imagcs. In order to demonstrate its validity, the proposed method is compared with several existing methods by experiment. The experimental results show that the proposed method outperforms the Farid, Analysis of Variation(ANOVA) and F-score methods. It has higher recognition ratio of stego-images and improves the detection efficiency.
作者 刘洪 王建军
出处 《信息与电子工程》 2009年第2期136-141,共6页 information and electronic engineering
关键词 信息隐藏 隐写分析 粒子群优化 支持向量机 特征选择 参数优化 information hiding steganalysis Particle Swarm Optimization Support Vector Machine feature selection parameter optimization
  • 相关文献

参考文献1

二级参考文献9

  • 1Fridrich J,Goljan M,and Hogea D.Attacking the outguess.Proc.of the ACM Workshop on Multimedia and Security,Juan-les-Pins,France,ACM Press,2002:3-6.
  • 2Fridrich J,Goljan M,and Hogea D.Steganalysis of JPEG images:Breaking the F5 algorithm.5th Information Hiding Workshop,Noordwijkerhout,Netherlands,Springer Verlag,2002:310-323.
  • 3Farid H and Lyu S.Higher-order wavelet statistics and their application to digital forensics.IEEE Workshop on Statistical Analysis in Computer Vision (in conjunction with CVPR),Madison,Wisconsin,2003:5-9.
  • 4Tzschoppe R,Bauml R,Huber J B,and Kaup A.Steganographic system based on higher-order statistics.Proc.of SPIE and IS&T.Imaging,Security Watermarking Multimedia Contents V,Santa Clara,CA,2003:156-166.
  • 5Avcibas I,Sankur B,and Sayood K.Statistical analysis of image quality measures.Journal of Electronic Imaging,2002,11(2):206-223.
  • 6Devore J and Peck R.Statistics-The Expioration and Analysis of Data.5th Edition.CA,USA:Duxbury/Thomson Learning,2005,Chap15.
  • 7Scholkopf B,Mika S,and Burges C JC,et al..Input space versus feature space in kernel-based method.IEEE Trans.on Neural Networks,1999,10(5):1000-1017.
  • 8Philip G.Adding images to your site.http://philip.greenspun.com.
  • 9Chang C and Lin C.LIBSVM-a library for support vector machines.http://www.csie.ntu.edu.tw/-cjlin/libsvm.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部