期刊文献+

关于非扩张映像和非扩张半群的单调混杂算法

Monotone Hybrid Method for Nonexpansive Mappings and Nonexpansive Semigroups
下载PDF
导出
摘要 在Hilbert空间中,使用单调混杂算法,修正了由Zhao等引进的隐迭代格式,分别对一族有限个非扩张映像和非扩张半群证明了强收敛定理。同时,也使用这种算法来逼近单调算子的零点,并得到强收敛定理。 In Hilbert spaces, using monotone hybrid method, we modify an implicit iteration scheme introduced by J. Zhao et al. for a finite family nonexpansive mappings and a nonexpansive semigroup, and prove strong convergence theorems. Meanwhile, this method was applied to approximate zero-point of monotone operators and obtain strong convergence theorem.
出处 《中国民航大学学报》 CAS 2009年第2期60-64,共5页 Journal of Civil Aviation University of China
关键词 非扩张映像 非扩张半群 单调算子 混杂算法 nonexpansive mapping nonexpansive semigroups monotone operators hybrid method
  • 相关文献

参考文献13

  • 1TAKAHASHI W.Nonlinear Functional Analysis[M].Yokohama:Yokohama Publishers,2000.
  • 2BYRNE C.A unified treatment of some iterative algorithms in signal processing and image reconstruction[J].Inverse Problems,2004(20):103-120.
  • 3PODILCHUK C I,MAMMONE R J.Image recovery by convex projections using a least-squares constraint[J].J Opt Soc Amer,1990(A7):517-521.
  • 4YOULA D.On deterministic convergence of iteration of relaxed projec tion operators[J].J Vis Commun Image Represent,1990(1):12-20.
  • 5SEZAN M I,STARK H.Applications of Convex Projection Theory to Image Recovery in Tomography and Related Areas,Image Recovery:Theory and Applications[M].New York:Academic Press,1987:415-562.
  • 6REICH S.Weak convergence theorems for nonexpansive mappings in Banach spaces[J].J Math Anal Appl,1979(67):274-276.
  • 7GENEL A,LINDENSTRAUSS J.An example concerning fixed points[J].Israel Journal of Mathematics,1975 (22):81-86.
  • 8NAKAJO K,TAKAHASHI W.Strong convergence theorems for non-expansive mappings and nonexpanaive semigroups[J].J Math Anal Appl,2003 (279):372-379.
  • 9XU H K,ORI R G.An implicit iteration precess for nonexpesive mappings[J].Numer Fuct Anal Optim,2001 (22):767-773.
  • 10OSILIKE M O.Implicit iteration process for common fixed points of a finite family of strictly pseudocon-tractive maps[J].J Math Anal Appl,2004 (294):73-81.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部