期刊文献+

基于UC-EBG的紧凑微波光子晶体研究 被引量:3

Research on Compact Microwave Photonic Crystals Based on UC-EBG Structure
下载PDF
导出
摘要 为了提高微波光子晶体结构尺寸的紧凑性,根据其局域谐振原理和等效电路分析模型,对已有的电磁带隙(EBG)结构进行了改进,得到了一种新型EBG结构。该结构通过引入弯曲折线延长了电流长度,增大了等效电感效应,同时采用了螺旋结构,延长了等效磁流,增强了等效电容效应。实验结果表明,新结构能够产生频率带隙,其带隙中心频率比已有的EBG结构低48.1%,且相对带宽也有24.3%的改善,达到了实现紧凑宽带EBG结构的目的。 Focusing on the problem that the electromagnetic band gap(EBG) structure of conventional microwave photonic crystals is not compact enough, a novel uni-planar EBG(UCEBG) structure is presented based on the physical mechanism and equivalent circuit model of EBG structures. Incorporated with the meandered strips and the spiral shape gaps, this structure significantly enlarges the equivalent capacitance between neighboring elements, as well as increases the equivalent inductance. Experimental results show that the obvious frequency band gap is observed, and its center frequency is 48.1% lower than that of conventional EBG with a relative bandwidth improvement of 24.3 %, realizing the compact wideband UC-EBG structure.
出处 《半导体光电》 CAS CSCD 北大核心 2009年第2期224-227,259,共5页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(60671001) 陕西省自然科学基础研究计划项目(2005F21) 西安市工业攻关基金项目(GG06020)
关键词 微波光子晶体 电磁带隙 周期结构 紧凑 表面波 microwave photonic crystals electromagnetic band gap (EBG) periodic structures compact surface wave
  • 相关文献

参考文献14

  • 1Kim T, Seo C. A novel photonic band-gap structure for low-pass filter of wide stop-band [J]. IEEE Microwave Guided Wave Lett. , 2000, 10(1): 13-15.
  • 2Rumsey I, Piket-May M, Kelly P K. Photonic band- gap structure used as filters in microstrip circuits[J]. IEEE Microwave Guided Wave Lett. , 1998, 8(10): 336-339.
  • 3Hill M J, Ziolkowski R W, Papapolymerou J. A high-Q reconfigurable planar EBG cavity resonator[J]. IEEE Microwave Wireless Compo. Lett., 2001, 6: 255-257.
  • 4Tae-Yeoul Y, Kai C. Uniplanar one-dimensional photonic bandgap structures and resonators [J]. IEEE Trans. on MTT, 2001, 49(3): 549-553.
  • 5Horii Y, Tsutsumi M. Harmonic control by photonic bandgap on microstrip patch antenna [J]. IEEE Microwave Guided Wave Lett. , 1999, 9(1): 13-15.
  • 6Radisic V, Qian Y, Itoh T. Broadband power amplifier using dielectric photonic bandgap structure [J]. IEEE Microwave Guided Wave Lett. , 1998, 8 (1) : 13-14.
  • 7Kesler M P, Maloney J G, Shirley B L. Antenna design with the use of photonic bandgap materials as all dielectric planar reflectors[J]. Microwave Opt. Teehnol. Lett. , 1996, 11(3):169-174.
  • 8Colburn J S, Rahmat-Samii Y. Patch antennas on externally perforated high dielectric constant substrates [J]. IEEE Trans. Antennas Propag., 1999, 47(12): 1785-1794.
  • 9He Sailing, et al. An explicit and efficient method for obtaining the radiation characteristics of wire antenna in metallic photonic bandgap structures [ J ]. Microwave and Optical Technol. Lett. , 2000, 26(2): 67-73.
  • 10Sievenpiper D. High-impedance electromagnetic surfaces[D]. Los Angles: University of California, 1999.

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部