期刊文献+

纳米结构金属空位形成能的研究 被引量:2

A study of the vacancy formation energy of nanostructure metals
下载PDF
导出
摘要 本文在Tiwari and Patil(Scripta Metallurgica,1975,9:833)计算空位形成能的模型基础上,研究了纳米结构金属的空位形成能计算方法,通过引入形状因子,并考虑晶粒尺寸效应,计算了面心立方(fcc)、体心立方(bcc)和密排六方(hcp)结构纳米金属的空位形成能.结果表明,纳米结构金属的空位形成能随着晶粒尺寸的减小而下降;晶粒尺寸不变时,空位形成能随着晶粒形状因子的增大呈线性下降趋势. Based on the model of calculation vacancy formation energy proposed by Tiwari and Patil (Scripta Metal- lurgica, 1975, 9: 833), we studied the calculation method of vacancy formation energy for nanostructure metals by introducing figure factor and considering grain size effect, we also calculated the vacancy formation energy of typical nar^ostructure metals, such as fcc, bcc and hcp metals. The results show that the vacancy formation energy of nano- structure metals decreases with the reducing the grain size and the vacancy formation energy decreases linearly with increasing the figure factor.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期310-314,共5页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(50461001)
关键词 空位 纳米结构金属 空位形成能 vacancy, nanostructure metals, vacancy formation energy
  • 相关文献

参考文献12

  • 1Kim H K, Huh S H, Park J W, et al The cluster sized dependence of thermal stabilities of both molybdenum and tungsten nanoclusters. Chemical Physics Letters, 2002, 354: 165-172.
  • 2Wu X L, Li B, Ma E. Vacancy clusters in ultrafine grained AI by severe plastic deformation. Applied Physics Letters, 2007, 91: 141908.
  • 3Qi W H, Wang MP, XuGY. The partical size dependence of cohesive energy of metallic nano particles. Chemical Physics Letters, 2003, 372 : 632-634.
  • 4Tiwari G P, Patil R V. A correlation between vacancy formation energy and cohesive energy. Scripta Metallurgica, 1975, 9: 833.
  • 5Molachlan J R, Chauberlain L L. Atomic vibration and the melting process in metals. Acta Metallurgica, 1964, 12: 577.
  • 6齐卫宏,汪明朴,徐根应.金属纳米微粒的尺寸效应[J].材料导报,2003,17(10):4-6. 被引量:3
  • 7张喜燕,赵新春,贾冲,刘庆.计算典型结构金属元素空位形成能的新方法[J].重庆大学学报(自然科学版),2008,31(12):1342-1345. 被引量:4
  • 8Miedema A R. Surface segregation in alloys of transition metals. Zeitschrift Fur Metallkunde, 1978, 69: 287-232.
  • 9Brands E A, Smith E. Metals reference book, 6th ed. London: Butterworth, 1983,1-200.
  • 10张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论.长沙:湖南大学出版社,1999,300-312.

二级参考文献17

  • 1TAVAZZA F, WAGNER R, CHAKA A M, et al. Vacancy formation energy near an edge dislocation: A hybrid quantum-classical study[J].Materials Science and Engineering A, 2005, 400 : 72-75.
  • 2ZHANG J M, WEN Y N, XU K W. Calculation of the formation energies of isolated vacancy and adatomvacancy pair at low-index surfaces of fcc metals with MAEAM[J]. Applied Surface Science, 2007, 253: 3779-3784.
  • 3DE LEEUW S W, GILLAN M J. Calculation of the free energy of vacancy formation in solids[J]. Journal of Physics C, 1982, 15:5161-5169.
  • 4汪永江.金属中空位的形成能.物理学报,1959,15:470-473.
  • 5VAROTSOS P. On the formation and activation volume of a vacancy in tetragonal metals[J]. Journal of Physics F, 1980, 10:571-574.
  • 6VAROTSOS P, LUDWIG W, ALEXOPOULOS K. Calculation of the formation volume of vacancies in solids[J]. Physical Review B, 1978, 18:2684-2690.
  • 7TIWARI G P, PATIL RV. A correlation between vacancy formation energy and cohesive energy[J].Scripta Metallurgica, 1975, 9:833.
  • 8BROOK S H. Impurities and imperfections[D]. Cleveland: American Society for Metals, 1955.
  • 9GUELLIL A M, ADAMS J B. The application of the analytic embedded atom method to bee metals and alloys[J].Journal of Materials Research, 1992,7: 639.
  • 10ADAMS J B, FOILES S M, WOLFER W G. Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method[J].Journal of Materials Research, 1989, 4: 102.

共引文献6

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部