摘要
设G是一个简单图,L=u1u2…ut是G中的一个路,定义L的度d(L)=∑ti=1d(ui),其中d(ui)为ui在G中的度数.本文证明了:若G是n≥3阶几乎无桥的简单连通图,GK1,n-1,且对G中任何两个无公共点的二长路L1,L2,有d(L1)+d(L2)≥2n-1,则G有一个D-闭迹,从而G的线图L(G)是Hamilton图.
おor a path L=u1u2…ut of simple graph G, let d(L)=∑ti=1d(ui), where d(ui) are degree of the vertices ui. H is a path of length 2.The main result is as follows: Let G be a simple connected, almost bridgeless graph of order n≥3, GK1,n-1. If for each pair of path L1 and L2 which have no common vertex, and 〈Li〉≌H,i=1,2, d(L1)+d(L2)≥2n-1, then the line graph L(G) of G has a Hamiltonian cycle.
出处
《纯粹数学与应用数学》
CSCD
1998年第1期42-46,共5页
Pure and Applied Mathematics
关键词
D-闭迹
哈密顿图
线图
图论
简单图
Dcircuit
Hamiltonian graph
line graph1991 MSC 05C45