摘要
设Dn,s(t)是恰有t行含s圈正元的n阶布尔方阵的集合,stn.本文给出了当s=1或s为素数时Dn,s(t)中矩阵的幂敛指数的一个上界,证明了除t>n-s(n-1)+1/4-3/2,且s与n不互素外,这个上界可以达到,对Dn,s(t)中幂敛指数达到这个上界的矩阵作了部分刻划.
Let D n,s (t) be the set of n by n Boolean matrices with s-cycle positive elements on exactly t rows, stn. We derive a upper bound for the convergent indices of matrices in D n,s (t) when s=1 or s is prime. We prove that this upper bound can be attained except the case that t>n-s(n-1)+1/4-3/2, and s and n are not comprime. And we give partial characterizations of the matrices in D n,s (t) whose convergent indices attain this upper bound.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1998年第3期517-524,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
关键词
布尔矩阵
幂敛指数
s圈正元
有向图
布尔方阵
Boolean matrix, Convergent index,s-Cycle positive elements, Digraph