摘要
设Mm是空间形Nn(c)中的余维不大于2的紧致子流形,M的平均曲率向量关于法联络平行且不等于零.本文证明了,如果M具有正截面曲率,则M中不存在稳定积分流.所得结果给出了Lawson-Simons猜想的部分解答.
Let Mm be a compact submanifold immersed, with nonzero parallel mean curvature vector, in a space form Nn(c). In this paper, we shall prove that if the codimension (n-m) of the submanifold M in N is not greater than 2 and M is of positive sectional curvature, then there are no stable integral currents in M and the homology group Hp(M,Z)=0 for any p∈(0,m). The obtained results give a partial answer for the conjecture of H. B. Lawson and J. Simons.
出处
《烟台大学学报(自然科学与工程版)》
CAS
1998年第1期1-4,共4页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
陕西省自然科学基金
关键词
截面曲率
子流形
稳定流
黎曼流形
稳定积分流
sectional curvature, submanifold, shape operator, homology group, stable integral current